
GENERAL ELECTRIC CO UTICA N Y AIRCRAFT EQUIPMENT DIV F/6 9/2 NONLINEAR SYSTEM IDENTIFICATION STUDY, PART I, IMPLEMENTATION FF-ETC(U) DEC 79 E J EWEN AD-A081 464 UNCLASSIFIED RADC -TR-79-199-PT-1 NL 1002 AD8:464

SYSTEM IDENTIFICATION STUDY POST

RADC-TR-79-199, Part I (of two) Final Technical Report December 1979

NONLINEAR SYSTEM IDENTIFICATION STUDY Implementation Feasibility Study

General Electric Company

Dr. E. J. Ewen

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

80 3 4 000

7.

This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-79-199 has been reviewed and is approved for publication.

APPROVED: Daniel J. Kenneally

DANIEL J. KENNEALLY Project Engineer

APPROVED:

DAVID C. LUKE, Lt Colonel, USAF

Chief, Reliability and Compatibility Division

FOR THE COMMANDER: Jaken of Kleins

JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBCT) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED

	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)					
	(17) REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
18	RADC TR-79-199 Part 1 (of two)	RECIPIENT'S CATALOG NUMBER				
\sim	4. TITLE (and Subtitio)	THE OF REPORT & PENIOD DOVERED				
(6)	NONLINEAR SYSTEM IDENTIFICATION STUDY, Fart I	Final Technical Report.				
	Implementation Feasibility Study	Jan Sep 79				
		N/A				
	ANTHOR(*)	CONTRACT OR GRANT NUMBER(*)				
	Dr. E. J./Ewen 15	F3Ø6Ø2-79-C-ØØ46				
- 1	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
	General Electric Company	1				
	Aircraft Equipment Division / Utica NY 13501	62702F 23380321				
- 1	11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE				
- 1	n Al David Comb	Dec ember 1 979				
	Rome Air Development Center (RBCT) Griffiss AFB NY 13441	N/A				
l	14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)				
1	Sama					
ŀ	Same	UNCLASSIFIED 15a. DECLASSIFICATION DOWNGRADING				
Ì		N/A SCHEDULE				
Ì	16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>				
	Approved for public release; distribution unlimited.					
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same					
	18. SUPPLEMENTARY NOTES RADC Project Engineer: Daniel J. Kenneally (RBCT))				
- 1	19. KEY WORDS (Continue on reverse side if necessary and identify by block number	r)				
	Nonlinear system identification A/D converte	er npulse response				
	The implementation feasibility of a nonlinear systis evaluated in this report. The identification approach requiring measurements only at system in is applicable to weakly nonlinear systems whose be characterized by a finite Volterra series. Three hardware implementations of the identification.	tem identification technique technique uses a "black box" but and output terminals and Phavior is adequately				
L						

DD 1 FORM 1473

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

=// 1/1/

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

and their respective performances are evaluated. The impact of A/D converter quantization error, non-ideal amplifiers, multipliers and integrators on performance of the identification process is assessed. Performance requirements for each component of the three implementations are derived via simulation and analysis. The feasibility of implementing the technique using commercially available state of the art components and measurement equipment in each implementation is assessed.

RADC-TR-79-199, Part II, A computational complexity study of the identification technique processing to determine the class of nonlinear systems to which the technique can be practically applied will be published at a later date.

UNCLASSIFIED

TECHNICAL REPORT SUMMARY NONLINEAR SYSTEM IDENTIFICATION FINAL REPORT

PART I. IMPLEMENTATION FEASIBILITY STUDY

A. STUDY OBJECTIVES

The basic objective of this study effort is to evaluate the practical feasibility of a nonlinear system identification technique. The identification procedure studied is a black box technique where only input and output terminal measurements of the nonlinear system are used. The identification technique is applicable to a broad class of weakly nonlinear systems whose response can be characterized by a finite Volterra series. The identification procedure involves processing the input and output responses of a nonlinear system to obtain a set of linearly independent equations which uniquely define the parameters of a functional form of the second-order impulse response. Theoretically, the proposed identification technique represents a significant improvement over existing identification techniques because of its black box formulation. The intent of the study to determine if this identification technique can be practically implemented and maintain an advantage over existing techniques.

The study effort is divided into two parts:

- Part I An implementation feasibility study to determine practical methods of implementing the measurement scheme both digital and analog and to evaluate the requirements for the components of the measurement scheme.
- Part II A computational complexity study of the identification technique processing to determine the class of nonlinear systems to which the technique can be practically applied.

This technical report summary covers the results of Part I of the study effort - the implementation feasibility study.

B. SUMMARY OF RESULTS AND CONCLUSIONS

Three basic implementations of the identification technique were evaluated and the requirements for the critical parameters of each element of the measurement scheme were evaluated. The

results of these performance evaluations and significant conclusions are summarized below for the three configurations.

1. Digital Implementation (Final Report Section III.B)

The digital implementation of the identification technique functions as follows. A signal generator excites the nonlinear system with the appropriate signal. This input signal and the resultant nonlinear system output are amplified and converted into digital form via A/D converters. The resultant samples are stored in memory for future nonreal-time identification processing on a general purpose digital computer.

The performance evaluation of the digital implementation of the identification technique showed that the critical components of the digital implementation are the A/D converter and the pre-A/D converter amplifier. The signal generator and data storage requirements are not technology limited in terms of enabling implementation of the identification technique. The important conclusions impacting parameter specification of these devices are summarized below.

a. A/D Converter

- (1) The A/D converter must have 14 to 16 bits of resolution for adequate performance on a two-pole system. This increases to 20 to 24 bits as the number of poles increases to four. Since the highest resolution commercially available A/D converter has 16 bits of resolution at this point in time, any experimental validation of this implementation should be restricted to systems with two poles or less.
- (2) The sampling rate requirements for the A/D converter are driven by the accuracy requirements of the processing technique. For a two pole system, the sampling rate should be 4 to 10 times slower than the highest break frequency of the system under test. Current 16-bit A/D converter technology implies that the system under test be limited to an upper break frequency of approximately 10 to 30 kHz.

b. Amplifier

(1) The pre-A/D converter amplifier is necessary to adjust the output of the system under test to the full-scale input voltage level of the A/D converter. (2) The bandwidth requirements of the amplifier are a function of the processing approach used for identification. In general, one approach requires an amplifier with a bandwidth 1000 times the bandwidth of the system under test while the other approach requires the amplifier bandwidth to be approximately equal to the bandwidth of the system under test.

The above conclusions support the subsequent conclusion that the digital implementation of the identification technique can feasibly be constructed and used in an experimental test setup under the various constraints presented above.

2. Hybrid Implementation (Final Report Section III.C)

A hybrid implementation of the identification technique was evaluated. This implementation differs from the digital implementation in that the input and output of the system under test are integrated a number of times using analog integrators prior to sampling via A/D converters. These samples are stored for future nonreal-time processing on a digital computer.

The analyses of the performance of this implementation led to the following conclusions:

- (1) The resolution requirements for the hybrid implementation are significantly greater than for the digital implementation. The hybrid implementation requires 24 bits which is beyond the current state of the art in A/D converter technology. The conversion speed requirements are essentially the same as those required for the digital implementation.
- (2) For systems with two poles or less, the hybrid implementation offers no advantages over the digital implementation. For systems with more than two poles, the hybrid implementation offers potential performance improvement over the digital approach for an A/D converter with 24 bits. This improvement however increases the measurement implementation complexity and cost.

It was concluded that it is not feasible to consider implementation of this approach for an experimental validation at this time because of the A/D converter requirements. However, future improvements in A/D converter technology may permit implementation of this approach at that time.

3. Analog Implementation (Final Report Section III.D)

An analog implementation of the identification technique was also evaluated.

The analog implementation derives the necessary processing (inner product) quantities using analog components. The inner product device outputs are sampled and stored for further nonreal-time processing on a digital computer.

The performance evaluation has shown that the critical components in the analog implementation are the inner product device and the A/D converter; this has led to the following conclusions.

- (1) A minimum of 18 bits of A/D converter resolution is required to achieve minimum identification performance. Conversion speed is not important since only one sample per inner product device output is required.
- (2) The maximum tolerable error in the inner product output is on the order of 10^{-3} percent to achieve a minimum level of identification performance for A/D converters with 18 or more bits of resolution.
- (3) Performance improvement requires less inner product error (10⁻⁴ to 10⁻⁶ percent) and increased A/D converter resolution (20 to 24 bits). However, the performance of the analog implementation is below that demonstrated for the digital implementation.
- (4) Currently available analog multipliers have an output error on the order of 0.05 percent, which is approximately 50 times greater than the maximum tolerable error of 0.001 percent required for minimum performance of the identification technique.

The analog multiplier and the A/D converter requirements for the analog implementation imply that it is not feasible to consider this implementation for an experimental test setup in the present time frame. Significant technological developments for analog multipliers and A/D converters are necessary before this implementation can prove feasible.

TABLES OF CONTENTS

Section			Page
I	INT	RODUCTION	1
	A. B.	Study Objectives Summary of Results and Conclusions 1. Digital Implementation a. A/D Converter b. Amplifier c. Remaining Components	1 1 2 2 2 4
		2. Hybrid Implementation3. Analog Implementation	4 6
11	IDEN	NTIFICATION TECHIQUE	9
	Α.	Identification Technique Development 1. Background	9 9
		2. Functional Form for $h_2(t_1, t_2)$	11
		3. Identification Technique Description	14
		a. Identification of Linear Impulse Response $h_1(t)$	14
		b. Identification of Second Order	10
	В.	Impulse Response Identification Technique Processing	19 24
	С.	Performance Indices for the Identification Technique	25
III	IMPI	LEMENTATION FEASIBILITY STUDY	29
		Toulandakian Association	00
	A. B.	Implementation Approaches	29 29
	ь.	Digital Implementation 1. A/D Converter	31
		a. Requirements	31
		b. Simulation Model	31
		c. Performance Evaluation	35
		(1) Two-Pole System Analysis and	
		Results	35
		(2) Four-Pole System Analysis and	<i>4</i> 1

TABLES OF CONTENTS (Continued)

Section					Page
			d.	A/D Conversion Time Results	49
			е.	Second Order Impulse Response	
				Identification	56
			f.	Additional A/D Converter	
				Requirements	62
			g.	Summary of Currently Available	
				A/D Converters	67
		2 .	Ampl	ifier Requirements	72
		3.	Signa	al Generator Requirements	88
		4.	Data	Storage Requirements	94
		5.	Digi	tal Implementation - Conclusions	95
			a.	A/D Converter	95
			b.	Amplifier	96
			с.	Remaining Components	97
			d.	Summary	97
	С.	Hybr		plementation	97
		1.	Simu:	lation of Hybrid Implementation	98
		2.		Pole System Analysis and Results	100
		3.		-Pole System Analysis and Results	103
		4.		ifier, Signal Generator, and Data	
				age Requirements	105
		5.		lusions - Hybrid Implementation	105
	D.			plementation	105
		1.	_	tal Simulation - Analog	
				ementation	107
		2.	•	Converter Requirements	107
			a.	Two-Pole System Analysis and	
				Results	108
			b.	Integrator and Inner Product	400
				Device Requirements	108
				(1) Integrator Error	116
				(2) Inner Product Device	119
		3.	Ampl	ifier, Signal Generator, and Data	4.00
		4		age Requirements	123
		4.	Conc	lusions - Analog Implementation	123
IV	REFI	ERENCE	S		124

TABLES OF CONTENTS (Continued)

APPENDICES		
A	COMPUTER PROGRAM LISTING FOR THE DIGITAL IMPLEMENTATION OF THE IDENTIFICATION TECHNIQUE	125
В	COMPUTER PROGRAM LISTING FOR THE HYBRID IMPLEMENTATION OF THE IDENTIFICATION TECHNIQUE	146
С	COMPUTER PROGRAM LISTING FOR THE ANALOG IMPLEMENTATION OF THE IDENTIFICATION TECHNIQUE	155

LIST OF ILLUSTRATIONS

Figure	Title	Page
1 2	Digital Implementation of Identification Technique Hybrid Implementation	3 5
3	Analog Implementation	7
4	Identification Technique Configuration with N	
	Integrators	16
5	Equivalent Linear System with Transfer Function	
	$Y_2(s)$	21
6	Digital Implementation of Identification Technique	30
7	A/D Converter Simulation Model	31
8	Digital Output Voltages vs. Input Voltages	32
9	Listing of FORTRAN Subroutine for A/D Converter	34
10	Amplifier Circuit	36
11	Normalized Mean Square Error vs. A/D Converter	
	Resolution for Two-Pole System (Integration Time	
10	= 9.6 µs; Sampling Time = 4 ns)	40
12	Results of A/D Converter Resolution Simulation	4.5
10	Runs for Two-Pole System	45
13	Results of Sampling Interval Rate Simulation for	55
1.4	all A/D Converters	55
14	Second-Order System Response, Integration Time	
	= 3.2 μ s, Sampling Interval = 1 ns, MSB Set for	63
15	<pre>y₁(t) + y₂(t) Second-Order System Response, Integration Time</pre>	63
15	= 3.2 us, Sampling Period = 1 ns, MSB Set for y ₂ (t)	66
16	Commercially Available A/D Converter Characteris-	00
10	tics	69
17	Current A/D Converter Conversion Speed Character-	09
11	istics	70
18	Current A/D Converter Frequency Characteristics	71
19	Identification Technique Model to Account for	
10	Amplifier	73
20	Frequency Extent Comparison for Test System and	
20	Amplifier	74
21	Bode Diagram of Amplifier with Transfer Function	, -
	$H_{A_1}(s)$	75
22	Normalized Mean Squared Error as a Function of ω_1	76
23	Bode Diagram of Amplifier with Transfer Function	
	$H_{A_2}(s)$	78
24	Identification Technique Performance as a Function	
	of Amplifier Characteristics	79
25	Linear System Equivalence Concept	81

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
26	Equivalent Linear System Representation for Ampli-	
	fier Analysis	82
27	Identification Technique Performance as a Function	
	of Amplifier Characteristics	85
28	Identification Performance as a Function of Ampli-	
	fier Characteristics	86
29	RC Network	89
30	Operational Amplifier Network for Signal Generator	90
31	Short Pulse Response of Operational Amplifier Net-	
	work of Figure 30	92
32	Signal Generator Configuration for N = 2	93
33	Hybrid Implementation	99
34	Hybrid Implementation Identification Performance	
	as a Function of A/D Converter Resolution	102
35	Analog Implementation	106
36	Inner Product Device Model	106
37	Identification Technique Performance as a Function	
	of Inner Product Error - Analog Implementation	115
38	Practical Integrator	116
39	Inner Product Device	119
40	Analog Multiplier Model	120
		-

LIST OF TABLES

Table	Title	Page
1	Current-Voltage Relationships of Possible	10
2	Nonlinearities Identification Regults for Porfect A/R Conventor	12
2	Identification Results for Perfect A/D Converter (Machine Accuracy), Digital Implementation (9.6 µs	
	Integration Time)	38
3	Results for Levels of A/D Converter Resolution from	30
	8 to 24 Bits	39
4	Results for Levels of A/D Converter Resolution,	00
-	Integration Time = 7.2 µs, Sampling Interval = 3 ns	42
5	Results for Levels of A/D Converter Resolution,	
	Integration Time = 4.8 µs, Sampling Interval = 2 ns	43
6	Results for Levels of A/D Converter Resolution,	
	Integration Time = 2.4 µs, Sampling Interval = 1 ns	44
7	Four-Pole System, Perfect A/D Conversion	46
8	Simulation Results for Levels of A/D Converter	
	Resolution, Four-Pole System, Integration Time	
	= 4.8 μ s, Sampling Interval = 1.5 ns	48
9	Sampling Interval Results for Perfect A/D Conver-	
	sion, Integration Time = 9.6 μs	50
10	Sampling Interval Results for 16-Bit A/D Converter,	
	Integration Time = 9.6 µs	51
11	Sampling Interval Results for 14-Bit A/D Converter,	50
12	Integration Time = 9.6 µs Sampling Interval Results for 12-Bit A/D Converter,	52
14	Integration Time = 9.6 µs	53
13	Sampling Interval Results for 10-Bit A/D Converter,	55
15	Integration Time = 9.6 µs	54
14	Second-Order Response Results for A/D Converters,	54
1.1	Integration Time = 3.2 µs, Sampling Interval = 1 ns,	
	MSB Set for $y_1(t)$	60
15	Second-Order Response Results for A/D Converters,	
	Integration Time = 3.2 μ s, Sampling Interval = 1 ns	
	MSB Set for $y_2(t)$	64
16	Commercially Available A/D Converters	72
17	Identification Technique Performance for Different	
	Amplifier Configurations, Perfect A/D Conversion,	
	Integration Time = $9.6 \mu s$, Sampling Interval = $4 ns$	77
18	Identification Technique Performance for Different	
	Amplifier Configurations, Perfect A/D Conversion,	
	Integration Time = $9.6 \mu s$, Sampling Interval = $4 n s$	80

LIST OF TABLES (Continued)

Title	Page
Identification Technique Performance for Different	
	83
Identification Technique Performance for Different	00
	84
Simulation Results for Hybrid Implementation for	
Different Levels of A/D Converter Resolution,	
Four-Pole System, Integration Time = 4.8 μs,	
Sampling Interval = 1.5 ns	101
Simulation Results for Hybrid Implementation for	
	104
	104
	100
Integration Time = 9.6 µs, Analytical Integration	109
	110
	110
	111
	111
	112
	113
Different Levels of Inner Product Error, Integra-	
tion Time = 9.6 μ s, 16-Bit A/D Converter	114
Practical Integrator Error	118
Integrated Output Peak Values - Two-Pole System	118
	Identification Technique Performance for Different Amplifier Configurations, Perfect A/D Conversion, Integration Time = 9.6 μs , Sampling Interval = 4 ns Identification Technique Performance for Different Amplifier Configurations, Perfect A/D Conversion, Integration Time = 9.6 μs , Sampling Interval = 4 ns Simulation Results for Hybrid Implementation for Different Levels of A/D Converter Resolution, Four-Pole System, Integration Time = 4.8 μs , Sampling Interval = 1.5 ns Simulation Results for Hybrid Implementation for Different Levels of A/D Converter Resolution, Four-Pole System, Integration Time = 4.8 μs , Sampling Interval = 1.5 ns Comparison of Hybrid and Digital Implementation Performance for Four-pole System, Integration Time = 4.8 μs , Sampling Interval = 1.5 ns Simulation Results for Analog Implementation for Different Levels of A/D Converter Resolution, Integration Time = 9.6 μs , Analytical Integration Simulation Results for Analog Implementation for Different Levels of Inner Product Error, Integration Time = 9.6 μs , Perfect A/D Converter Simulation Results for Analog Implementation for Different Levels of Inner Product Error, Integration Time 9.6 μs , 24-Bit A/D Converter Simulation Results for Analog Implementation for Different Levels of Inner Product Error, Integration Time = 9.6 μs , 20-Bit A/D Converter Simulation Results for Analog Implementation for Different Levels of Inner Product Error, Integration Time = 9.6 μs , 18-Bit A/D Converter Simulation Results for Analog Implementation for Different Levels of Inner Product Error, Integration Time = 9.6 μs , 18-Bit A/D Converter Simulation Results for Analog Implementation for Different Levels of Inner Product Error, Integration Time = 9.6 μs , 18-Bit A/D Converter Simulation Results for Analog Implementation for Different Levels of Inner Product Error, Integration Time = 9.6 μs , 18-Bit A/D Converter Simulation Results for Analog Implementation For Different Levels of Inner Product Error, Integration Time = 9.6 μs ,

EVALUATION

The objective of this effort was to develop, quantify, and evaluate the practical constraints for the implementation of a time domain methodology for weakly nonlinear system identification. This time domain methodology permits the functional characterization (as opposed to numerical) of the second and third order Volterra kernals from input/output measurements (and subsequent analysis) on an otherwise, nonlinear black box with memory.

The process of system identification consists of postulating a valid analytical model for the system under consideration and performing tests on the system to completely specify or "identify" the parameters which describe the system analytical model. For example, a linear system is completely characterized by its impulse response, h(t). The system identification process for this linear system analytical model consists of any procedure that completely determines h(t). The present consideration in the area of nonlinear system identification is the derivation of a valid analytical model for the nonlinear system under consideration.

The identification procedure successfully studied is a black box technique where only input and output terminal measurements of the nonlinear system are used. The identification technique is applicable to a broad class of weakly nonlinear systems whose response can be characterized by a finite Volterra series. The identification procedure involves processing the input and output responses of a nonlinear system to obtain a set of linearly independent equations which uniquely define the parameters of a functional form of the second-order impulse response. Theoretically, the proposed identification technique represents a significant improvement over existing identification techniques because of its black box formulation. The intent of the study was to determine where this identification technique

FRECEDING PAGE BLANK - NOT FILMED

can be practically implemented and maintain an advantage over existing techniques. To these ends, the practical implementation constraints have been developed, quantified and assessed for these candidate measurement configurations. The robustness of the technique to nonlinear circuits with many and/or repeated poles is the subject of Part II of this final report.

Daniel J. Kenneally
Project Engineer

SECTION I

INTRODUCTION

A. STUDY OBJECTIVES

The basic objective of this study effort is to evaluate the practical feasibility of a nonlinear system identification technique. The identification procedure studied is a black box technique where only input and output terminal measurements of the nonlinear system are used. The identification technique is applicable to a broad class of weakly nonlinear systems whose response can be characterized by a finite Volterra series. The identification procedure involves processing the input and output responses of a nonlinear system to obtain a set of linearly independent equations which uniquely define the parameters of a functional form of the second-order impulse response. Theoretically, the proposed identification technique represents a significant improvement over existing identification techniques because of its black box formulation. The intent of the study to determine if this identification technique can be practically implemented and maintain an advantage over existing techniques.

The study effort is divided into two parts:

- Part I An implementation feasibility study to determine practical methods of implementing the measurement scheme both digital and analog and to evaluate the requirements for the components of the measurement scheme.
- Part II A computational complexity study of the identification technique processing to determine the class of nonlinear systems to which the technique can be practically applied.

This final report represents the results of Part I of the study effort - the implementation feasibility study. The computational complexity study results will be presented in Part II of this final report.

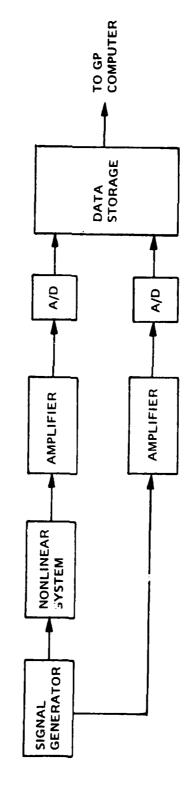
B. SUMMARY OF RESULTS AND CONCLUSIONS

Three basic implementations of the identification technique were evaluated and the requirements for the critical parameters of each element of the measurement scheme were evaluated. The

results of these performance evaluations and significant conclusions are summarized below for the three configurations.

1. Digital Implementation

The block diagram of the digital implementation of the identification technique is shown in Figure 1. A signal generator excites the nonlinear system with the appropriate sum of decaying exponential functions. This input and the resultant nonlinear system output are amplified and converted into digital form via A/D converters. The resultant samples are stored in memory for future nonreal-time processing on a general-purpose digital computer.


The performance evaluation of the digital implementation of the identification technique showed that the critical components of the digital implementation are the A/D converter and the pre-A/D converter amplifier. The important conclusions impacting parameter specification of these devices are summarized below.

a. A/D Converter

- (1) The A/D converter must have 14 to 16 bits of resolution for adequate performance with a two-pole system. This increases to 20 to 24 bits as the number of poles increases to four. Since the highest resolution commercially available A/D converter has 16 bits of resolution at this point in time, any experimental validation of this implementation should be restricted to systems with two poles or less.
 - (2) The sampling rate requirements for the A/D converter are driven by the accuracy requirements of the processing technique. For a two pole system, the sampling rate should be 4 to 10 times slower than the highest break frequency of the system under test. The fastest 16-bit A/D converter currently available is limited to a sampling rate of 125 kHz. This implies that the system under test be limited to an upper break frequency of approximately 10 to 30 kHz.

b. Amplifier

(1) The pre-A/D converter amplifier is necessary to adjust the output of the system under test to the full-scale input voltage level of the A/D converter.

Digital Implementation of Identification Technique Figure 1.

- (2) The bandwidth requirements of the amplifier are a function of the processing approach used for identification. In general, one approach requires an amplifier with a bandwidth 1000 times the bandwidth of the system under test while the other approach requires the amplifier bandwidth to be approximately equal to the bandwidth of the system under test.
- (3) Operational amplifiers with gain-bandwidth products of up to 1000 MHz are presently commercially available. These are compatible with either processing approach described in (2) above.

c. Remaining Components

The remaining components of the digital implementation are not technology limited in terms of enabling implementation of the identification technique. The important conclusions are given below:

- (1) No commercially available waveform generator has an exponential function capability. The appropriate inputs will be generated by using operational amplifiers as low-pass filters and appropriately clamping the short pulse response to obtain the exponential function.
- (2) Data storage will be accomplished using static random access memory (RAM) chips and a programmable interface to transmit the data to the digital computer for nonreal-time processing.

The above conclusions support the subsequent conclusion that the digital implementation of the identification technique can feasibly be constructed and used in an experimental test setup under the various constraints presented above.

2. Hybrid Implementation

A hybrid implementation of the identification technique is shown in Figure 2 for a test system with two poles.

This implementation differs from the digital implementation, in that the input and output of the system under test are integrated twice using analog integrators prior to sampling via A/D converters. These samples are stored for future nonrealtime processing on a digital computer.

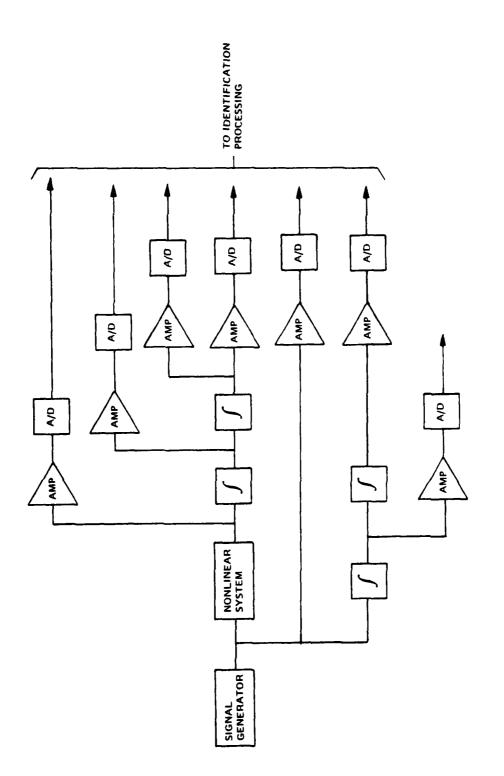


Figure 2. Hybrid Implementation

The analyses of the performance of this implementation led to the following conclusions:

- (1) The resolution requirements for the hybrid implementation are significantly greater than for the digital implementation. The hybrid implementation requires 24 bits which is beyond the current state of the art in A/D converter technology. The conversion speed requirements are essentially the same as those required for the digital implementation.
- (2) For systems with two poles or less, the hybrid implementation offers no advantages over the digital implementation. For systems with more than two poles, the hybrid implementation offers potential performance improvement over the digital approach for an A/D converter with 24 bits. This improvement however increases the measurement implementation complexity and cost.
- (3) The amplifier and signal generator requirements are the same as those derived for the digital implementation.
- (4) The amount of data to be stored is [N + (1/2)] times greater for the hybrid implementation than for the digital implementation (N is the number of poles in the linear portion of the system under test).

It is not feasible to consider implementation of this approach for an experimental validation at this time because of the A/D converter requirements.

However, future improvements in A/D converter technology may permit implementation of this approach at that time.

3. Analog Implementation

An analog implementation of the identification technique is shown in Figure 3.

The analog implementation derives the necessary inner product quantities using analog components. The inner product device outputs are sampled and stored for further nonreal-time processing on a digital computer.

The performance evaluation has shown that the critical components in the analog implementation are the inner product

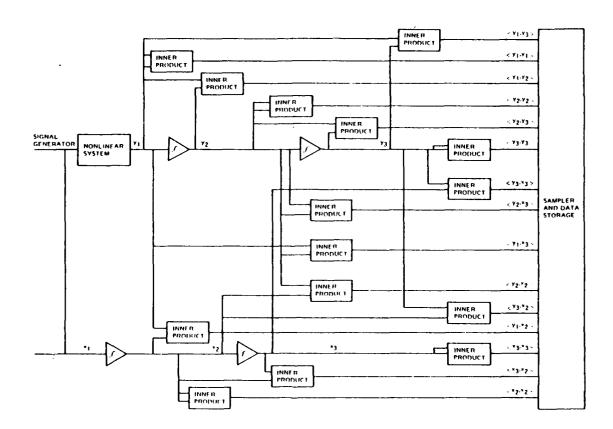


Figure 3. Analog Implementation

device and the A/D converter; this has led to the following conclusions.

- (1) A minimum of 18 bits of A/D converter resolution is required to achieve minimum identification performance. Conversion speed is not important since only one sample per inner product device output is required.
- (2) The maximum tolerable error in the inner product output is on the order of 10^{-3} percent to achieve a minimum level of identification performance for A/D converters with 18 or more bits of resolution.
- (3) Performance improvement requires less inner product error $(10^{-4} \text{ to } 10^{-6} \text{ percent})$ and increased A/D converter resolution (20 to 24 bits). However, the performance of the analog implementation is below that demonstrated for the digital implementation.
- (4) Currently available analog multipliers have an output error on the order of 0.05 percent, which is approximately 50 times greater than the maximum tolerable error of 0.001 percent required for minimum performance of the identification technique.
- (5) Amplifier and signal generator requirements are essentially the same as those derived for the digital implementation.
- (6) Data storage requirements are significantly reduced for the analog implementation. Only (4N + 1) data words need to be stored (N is the number of poles in linear portions of systems under test).

The analog multiplier and the A/D converter requirements for the analog implementation imply that it is not feasible to consider this implementation for an experimental test setup in the present time frame. Significant technological developments for analog multipliers and A/D converters are necessary before this implementation can prove feasible.

SECTION II

IDENTIFICATION TECHNIQUE

A. IDENTIFICATION TECHNIQUE DEVELOPMENT

1. Background

The basic objective of this study (Part I) is to investigate the implementation feasibility of an identification technique for nonlinear systems. The identification technique is described in detail in this section and is based on the analysis presented in Reference 1. This technique is a "black box" procedure in that only measurements at the system input and output terminals are required. The feasibility of implementing a test setup to make the required data measurements of the input and output is the primary focus of this study (Part I). The identification technique is applicable to a class of weakly nonlinear systems whose behavior is adequately characterized in terms of a finite Volterra functional series given by

$$y(t) = \sum_{n=1}^{\overline{N}} y_n(t) = \sum_{n=1}^{\overline{N}} f h_n(\tau_1, \dots, \tau_n) \prod_{p=1}^{n} x(t - \tau_p) d\tau_p, \quad (1)$$

where

 $y_n(t)$ is the n-th order portion of the response

denotes an n-fold integration from $-\infty$ to $+\infty$

n π denotes an n-fold product p=1

The nth-order Volterra kernel $h_n(\tau_1,\ldots,\tau_n)$ can be referred to as the nth-order nonlinear impulse response (Reference 2). In actuality, the nonlinear impulse responses may not be identically zero above order \overline{N} . However, the finite sum of

equation (1) implies that higher-order terms contribute negligibly to the output.

As is the case with linear systems, there is a corresponding representation in the Laplace transform domain. The nth-order nonlinear transfer function, which is defined to be the n-dimensional Laplace transform of $h_n(\tau_1,\ldots,\tau_n)$, is given by

$$H_{\mathbf{n}}(\mathbf{s}_{1},\ldots,\mathbf{s}_{\mathbf{n}}) = \underline{f} \ h_{\mathbf{n}}(\tau_{1},\ldots,\tau_{\mathbf{n}}) \prod_{\mathbf{p}=1}^{\mathbf{n}} e^{-\mathbf{s}_{\mathbf{p}}\tau_{\mathbf{p}}} d\tau_{\mathbf{p}}. \tag{2}$$

Closely related to $\mathbf{y}_n(\mathbf{t})$ is the multidimensional time function

$$y_n(t_1,\ldots,t_n) = \underline{f} h_n(\tau_1,\ldots,\tau_n) \prod_{p=1}^n x(t_p - \tau_p) d\tau_p.$$
 (3)

It is observed that $y_n(t_1,...,t_n)=y_n(t)$ when $t_1=...=t_n=t$. If the n-dimensional Laplace transform of $y_n(t_1,...,t_n)$ is denoted by $Y_n(s_1,...,s_n)$, it follows from equation (3) that

$$\mathbf{Y}_{\mathbf{n}}(\mathbf{s}_{1},\ldots,\mathbf{s}_{\mathbf{n}}) = \mathbf{H}_{\mathbf{n}}(\mathbf{s}_{1},\ldots,\mathbf{s}_{\mathbf{n}}) \prod_{\mathbf{p}=1}^{\mathbf{n}} \mathbf{X}(\mathbf{s}_{\mathbf{p}})$$
(4)

where X(s) is the conventional one-dimensional Laplace transform of x(t). $Y_n(s_1,\ldots,s_n)$ is reduced to $Y_n(s)$, the Laplace transform of $y_n(t)$, by applying the "association of variables" technique introduced by George (Reference 3). This approach implies that the nonlinear system is completely characterized by

the nonlinear impulse responses or, equivalently, the nonlinear transfer functions. Once either of these is known, the system response can be determined for arbitrary inputs. The problem of identifying a weakly nonlinear system therefore, consists of identifying the nonlinear impulse responses, by h_n (t_1 , t_2 , ..., t_n), $n = 1, 2, \ldots, \overline{N}$.

The identification technique developed in Reference 1 is designed to identify the parameters of closed-form expressions for the nonlinear impulse responses, h_n $(t_1,\,t_2,\,\ldots,\,t_n)$, $n=1,2,\ldots,\bar{N}$. The analysis presented in Reference 1 demonstrates how the technique identifies the parameters of $h_1(t),\,h_2(t_1,\,t_2)$ and $h_3(t_1,\,t_2,\,t_3)$. On the basis of this analysis, it is believed that the technique is extendable to identification of higher order nonlinear impulse responses $(\bar{N} \geq 4)$. This study (Part I) is concerned with the feasibility of implementing the identification of only the linear and second-order nonlinear impulse responses, $h_1(t)$ and $h_2(t_1,t_2)$.

A functional form for $h_2(t_1,t_2)$ for a broad class of nonlinear systems is presented below.

2. Functional Form for $h_2(t_1, t_2)$

In Volterra analysis, $h_1(t)$ is the impulse response usually associated with the linear incremental model of a nonlinear system. When this model consists of linear resistors, capacitors, inductors, and controlled sources, the linear impulse response is described by

$$h_{1}(t) = \begin{cases} \sum_{i=1}^{N} R_{i}e^{\lambda_{i}t} & , t \geq 0 \\ 0 & , t < 0 \end{cases}$$
 (5)

where Re { λ_i } \leq 0 and it is assumed that the λ_i are distinct.

In general, a weakly nonlinear system contains several nonlinearities. If the nonlinearities can be modeled by nonlinear resistors, capacitors, inductors, and controlled sources whose current-voltage relationships can be expanded into power series as shown in Table 1 and if $h_1(t)$ is given by equation (5), the second-order nonlinear impulse response can be expressed in the symmetrical form (Reference 1):

TABLE 1. CURRENT-VOLTAGE RELATIONSHIPS OF POSSIBLE NONLINEARITIES

1) Zero Memory, Independent Nonlinearity

$$i = K(v) = \sum_{j=1}^{\infty} K_j v^j$$

2) Zero Memory, Dependent Nonlinearity

$$i = G(u,v) = \sum_{\substack{j=0 \ k=0 \\ j\neq k=0}}^{\infty} \sum_{j=0}^{\infty} g_{jk} u^{j} v^{k}$$

3) Capacitive, Independent Nonlinearity

$$i = \frac{d}{dt} Q(v) = \frac{d}{dt} \sum_{j=1}^{\infty} \gamma_j v^j$$

4) Inductive, Independent Nonlinearity

$$\mathbf{i} = \sum_{j=1}^{\infty} \psi_{j} \left[\int_{-\infty}^{t} \mathbf{v}(z) \, dz \right]^{j}$$

where

v = incremental voltage across the element

i = incremental current through the element

u = incremental voltage elsewhere in the circuit.

$$h_2(t_1, t_2) = \sum_{k_1=1}^{M} \sum_{k_2=1}^{N} A_{k_1 k_2} e^{a_{k_1} t_1 + a_{k_2} t_2} U(t_2 - t_1)$$

$$+ \sum_{k_{1}=1}^{M} \sum_{k_{2}=1}^{N} A_{k_{1}k_{2}}^{a_{k_{1}}t_{2}+a_{k_{2}}t_{1}} U(t_{1}-t_{2})$$
 (6)

where

$$M = N^2 + 1. (7)$$

$$U(t) = \begin{cases} 1 & , t > 0 \\ 0 & , t < 0 \end{cases}$$
 (8)

and where the natural frequencies in equation (6) are related to those in equation (5) according to:

$$a_{1} = \lambda_{1}, \ a_{2} = \lambda_{2}, \dots, a_{N} = \lambda_{N} ,$$

$$a_{N+1} = \lambda_{1} - \lambda_{1} = 0, \ a_{N+2} = \lambda_{1} - \lambda_{2}, \dots, \ a_{2N} = \lambda_{1} - \lambda_{N}$$

$$a_{2N+1} = \lambda_{2} - \lambda_{1}, \ a_{2N+2} = \lambda_{2} - \lambda_{3}, \dots, \ a_{3N-1} = \lambda_{2} - \lambda_{N}$$

$$a_{N2-N+3} = \lambda_{N} - \lambda_{1}, \ a_{N2-N+4} = \lambda_{N} - \lambda_{2}, \dots,$$

$$a_{N2+1} = \lambda_{N} - \lambda_{N-1}.$$
(9)

The ordering of the ak_1 terms in equation (6) assumes all the factors $\lambda_i-\lambda_j$ to be distinct, such that $\lambda_i-\lambda_j\neq\lambda_k$ for any i,j,k = 1,...,N. Also, the zero entry that results from $\lambda_i-\lambda_j$ when i = j is included only once as the entry a_{N+1} . In addition, it is readily shown that (Reference 1)

$$A_{k_1k_2} = A_{k_2k_1}$$
 for $k_1, k_2 \le N$ (10)

and that the coefficients of terms in equation (8) having the form

$$e^{(\lambda_i - \lambda_j)t_1 + \lambda_i t_2}$$
, $i \neq j$

are identically zero.

The identification technique will identify the parameters of $h_2(t_1, t_2)$ as represented in equation (6).

3. Identification Technique Description

The functional form for $h_2(t_1,\ t_2)$ established in equation (6) implies that the identification of $h_2(t_1,\ t_2)$ reduces to identification of the parameters a_{k_1} , a_{k_2} , $A_{k_1k_2}$ and N. However, equations (5) and (9) show that a_{k_1} , a_{k_2} and N can be determined once the linear impulse response is known. Therefore, the task of identifying these parameters reduces to the task of identifying $h_1(t)$. The problem of identifying the coefficients $A_{k_1k_2}$ still remains.

The identification process separates into two distinct steps: (1) identification of $h_1(t)$; and (2) identification of the Ak_1k_2 quantities of $h_2(t_1,\ t_2)$. These two steps are considered below.

a. Identification of the Linear Impulse Response, $h_1(t)$

The first step in the identification of $h_1(t)$, the linear impulse response of a nonlinear system, is to excite the system with an input amplitude such that the output is linear. The amplitude of this signal can be determined by exciting the system with a sinusoidal signal of amplitude A and performing a spectral analysis of the resultant response. Amplitude A is then adjusted until the amplitude level of the harmonic frequencies of the output becomes sufficiently small compared to the level of the fundamental component. The following analysis assumes that the output of the nonlinear system represents the linear response of the systems described by

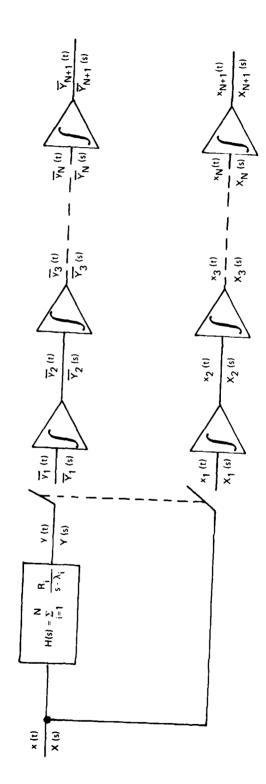
$$h_{1}(t) = \begin{cases} \sum_{i=1}^{N} R_{i} & e^{\lambda_{i}t}, \\ 0 & \text{if } t \ge 0 \end{cases}$$
(11)

where Re $\{\lambda_i\}$ < 0 and the λ_i are distinct. The λ_i and R_i will be identified using the pencil-of-functions approach (Reference 4).

The pencil-of-functions approach operates on the system as shown in Figure 4, where the input to the linear system and resulting output are integrated N times over the real-time interval (0,T). The following notation is used in Figure 4.

$$x_{i+1}(t) = \begin{cases} t \\ f \\ x_{i}(\tau) d\tau & 0 \le t \le T \\ 0 \\ 0 & \text{elsewhere} \end{cases}$$

$$i = 1, ... N$$
(12)


$$\overline{y}_{i+1}(t) = \begin{cases} t & 0 \\ f & y_i(\tau) \\ 0 & 0 \end{cases}$$
 elsewhere
$$t = 1, \dots, N$$
 (13)

$$X_1(s) = \mathcal{L}\left\{x_1(t)\right\} = \int_0^T x(t) e^{-st} dt$$
 (14)

$$X_{i+1}(s) = \frac{X_i(s)}{s} i=1,...,N$$
 (15)

$$\overline{Y}_1(s) = \mathcal{L}\left\{\overline{y}_1(t)\right\} = \int_0^T y(t) e^{-st} dt$$
 (16)

$$\overline{Y}_{i+1}(s) = \frac{\overline{Y}_{i}(s)}{s} i=1,...,N$$
 (17)

Identification Technique Configuration with N Integrators Figure 4.

It has been shown (Reference 4) that poles of the linear system satisfy the polynomial equation

$$\sum_{i=0}^{N} \lambda^{N-i} \left(\left| G_{2N+1} \right|_{i+1, i+1} \right)^{1/2} = 0$$
 (18)

where G_{2N+1} is the Gram determinant shown in equation (19) below:

$$G_{2N+1} = \begin{pmatrix} \langle \overline{y}_{1}, \overline{y}_{1} \rangle & \langle \overline{y}_{1}, \overline{y}_{2} \rangle & \dots & \langle \overline{y}_{1}, \overline{y}_{N+1} \rangle & \langle \overline{y}_{1}, x_{2} \rangle & \dots & \langle \overline{y}_{1}, x_{N+1} \rangle \\ \langle \overline{y}_{2}, \overline{y}_{1} \rangle & \langle \overline{y}_{2}, \overline{y}_{2} \rangle & \dots & \langle \overline{y}_{2}, \overline{y}_{N+1} \rangle & \langle \overline{y}_{2}, x_{2} \rangle & \dots & \langle \overline{y}_{2}, x_{N+1} \rangle \\ \vdots & & & & & & \\ \langle \overline{y}_{N}, \overline{y}_{1} \rangle & \langle \overline{y}_{N}, \overline{y}_{2} \rangle & \dots & \langle \overline{y}_{N}, \overline{y}_{N+1} \rangle & \langle \overline{y}_{N}, x_{2} \rangle & \dots & \langle \overline{y}_{N}, x_{N+1} \rangle \\ \langle x_{2}, \overline{y}_{1} \rangle & \langle \overline{x}_{2}, \overline{y}_{2} \rangle & \dots & \langle x_{2}, \overline{y}_{N+1} \rangle & \langle x_{2}, x_{2} \rangle & \dots & \langle x_{2}, x_{N+1} \rangle \\ \vdots & & & & & \\ \langle x_{N+1}, \overline{y}_{1} \rangle & \langle x_{N+1}, \overline{y}_{2} \rangle & \dots & \langle x_{N+1}, \overline{y}_{N+1} \rangle & \langle x_{N+1}, x_{N+1} \rangle \end{pmatrix}$$

$$(19)$$

Further, the residues $\textbf{R}_{\dot{1}}$ of the poles $~\lambda_{\dot{1}}$ satisfy the equation

$$R = C Y$$
 (20)

where

$$R = \text{residue matrix} = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ \vdots \\ R_N \end{bmatrix}$$
 (21)

Y = output matrix =
$$\begin{bmatrix} \overline{y}_{2}(T) \\ \overline{y}_{3}(T) \\ \overline{y}_{4}(T) \\ \vdots \\ \overline{y}_{N+1}(T) \end{bmatrix}$$
 (22)

 $C = N \times N$ matrix whose i,jth element is defined by

$$C_{ij} = \frac{P_{j}(T)}{\lambda_{j}^{i}} - \sum_{m=1}^{i} \frac{x_{m+1}(T)}{(\lambda_{j})^{i+1-m}}$$
 (23)

where

$$P_{j}(T) = \int_{0}^{T} e^{\lambda j} (T-\tau) x(\tau) d\tau$$
 (24)

Equations (18), (20), (23), and (24) show how $\rm R_i$ and λ_i are obtained once N is known. The pencil of functions technique also permits determination of N, the number of poles of the linear system. This can be accomplished as follows:

Using the system shown in Figure 4:

- (1) Assume N = 1
- (2) Measure $\overline{y_i}(t)$, $i=1,\ldots,N+1$, and $x_i(t)$, $i=2,\ldots,N+1$
- (3) Form the Gram determinant G_{2N+1} as given by equation (19)
- (4) Check singularity of G2N+1

- (5) If G_{2N+1} is nonsingular, increase N by 1 and repeat from step (2)
- (6) If G_{2N+1} is singular, then the number of poles is N 1

Therefore, the pencil-of-functions system identification technique completely specifies $h_1(t)$ as given in equation (11).

b. Identification of the Second Order Impulse Response, $h_2(t_1, t_2)$

The second step of the identification procedure is to identify the unknown parameters of $h_2(t_1, t_2)$. With $h_2(t_1, t_2)$ given by:

$$h_{2}(t_{1}, t_{2}) = \sum_{k_{1}=1}^{M} \sum_{k_{2}=1}^{N} A_{k_{1}k_{2}} e^{a_{k_{1}}t_{1}+a_{k_{2}}t_{2}} U(t_{2} - t_{1})$$

$$+ \sum_{k_{1}=1}^{M} \sum_{k_{2}=1}^{N} A_{k_{1}k_{2}} e^{a_{k_{1}}t_{2}+a_{k_{2}}t_{1}} U(t_{1} - t_{2})$$

$$+ \sum_{k_{1}=1}^{M} \sum_{k_{2}=1}^{N} A_{k_{1}k_{2}} e^{a_{k_{1}}t_{2}+a_{k_{2}}t_{1}} U(t_{1} - t_{2})$$
(25)

the only unknown parameters are the ${\rm A}_{k_1k_2}$ quantities since M, N, ${\rm A}_{k_1}$ and ${\rm A}_{k_2}$ are known from identification of ${\rm h}_1$ (t). A procedure for determining the ${\rm A}_{k_1k_2}$ using the pencil-of-functions method is described in this section.

The identification procedure utilizes the response of the weakly nonlinear system to a sum of L decaying exponentials as described by:

$$\mathbf{x(t)} = \begin{cases} \mathbf{L} & -\alpha_{\mathbf{i}} \mathbf{t} \\ \mathbf{\Sigma} & \mathbf{e} \end{cases}, \quad \mathbf{t} \geq 0$$

$$\mathbf{0} , \quad \mathbf{t} \leq 0$$

$$(26)$$

where Re $\{\alpha_1\}$ > 0. The second-order portion of the response to x(t) is given by the two-dimensional transform

$$Y_2(s_1, s_2) = H_2(s_1, s_2) \times (s_1) \times (s_2)$$
 (27)

Taking the one-dimensional Laplace transform of x(t) and the two-dimensional Laplace transform of $h_2(t_1,t_2)$ and substituting into equation (27) results in

$$Y_2(s_1, s_2) = \sum_{k_1=1}^{M} \sum_{k_2=1}^{N} \sum_{i=1}^{L} \sum_{j=1}^{L} A_{k_1 k_2}$$

$$\cdot \left(\frac{s_1 + s_2 - a_{k_2}}{(s_1 + s_2 - a_{k_1} - a_{k_2})(s_1 - a_{k_2})(s_2 - a_{k_2})} \right) \left(\frac{1}{s_1 + \alpha_i} \right) \left(\frac{1}{s_2 + \alpha_j} \right) . \tag{28}$$

Applying George's "association of variables" technique (Reference 3), $Y_2(s)$ becomes

$$Y_{2}(s) = \sum_{k_{1}=1}^{M} \sum_{k_{2}=1}^{N} \sum_{i=1}^{L} \sum_{j=1}^{L} A_{k_{1}}^{k_{2}}$$

$$\cdot \left[\frac{\alpha_{i} + \alpha_{j} + 2a_{k_{1}}}{(\alpha_{j} + a_{k_{1}})(\alpha_{i} + a_{k_{1}})(\alpha_{i} + \alpha_{j} + a_{k_{1}} + a_{k_{2}})} \frac{1}{s - (a_{k_{1}} + a_{k_{2}})} \right]$$

$$- \frac{1}{(\alpha_{j} + a_{k_{1}})(\alpha_{i} + a_{k_{2}})} \frac{1}{s + (\alpha_{j} - a_{k_{2}})}$$

$$- \frac{1}{(\alpha_{i} + a_{k_{1}})(\alpha_{j} + a_{k_{2}})} \frac{1}{s + (\alpha_{i} - a_{k_{2}})}$$

$$+ \frac{\alpha_{i} + \alpha_{j} + 2a_{k_{2}}}{(\alpha_{j} + a_{k_{2}})(\alpha_{i} + a_{k_{2}})(\alpha_{i} + a_{k_{1}} + a_{k_{1}})} \frac{1}{s + \alpha_{i} + \alpha_{j}}$$
(29)

where

The expression in equation (29) is the Laplace transform of a sum of exponential time functions. This sum can be interpreted as the impulse response of an equivalent linear system as indicated in Figure 5. In other words, the second-order response $y_2(t)$ can be visualized as though it were generated by an equivalent linear system. However, the equivalence is valid only if the equivalent linear system is considered to be excited by an impulse. It follows that the problem of identifying $h_2(t_1,t_2)$ has been reduced to the simpler problem of identifying a linear system and the pencil-of-functions technique can be used again.

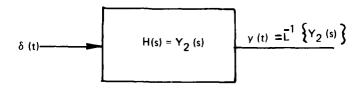


Figure 5. Equivalent Linear System with Transfer Function $Y_2(s)$

The system is excited by an input amplitude such that the output is described by linear and second-order terms, $y_1(t)$ and $y_2(t)$. The identification process will operate the signal $y_2(t)$. For this purpose, the second-order portion of the response, y_2 ,(t) is isolated from the total response. $y_2(t)$ is obtained by subtracting from the total response the corresponding linear response $y_1(t)$, which is known because $h_1(t)$ has been identified. It is shown in Reference 1 that the second-order response $y_2(t)$ need not be isolated from the total response for the identification procedure to work. (This will be investigated in detail in Part II of the study.) However, isolation of $y_2(t)$ from the total response eases the mathematical presentation and will be assumed necessary at this point, to identify implementation constraints.

Once $y_2(t)$ is isolated from the total response, the coefficients $A_{k_1k_2}$ are then evaluated by applying the pencil-of-functions method to $y_2(t)$, treating it as though it were the impulse response of a linear system. This latter step is now discussed in detail.

From equation (29), the poles of $Y_2(s)$ are given by

$$s = a_{k_1} + a_{k_2}$$
, $k_1 = 1, ..., M$; $k_2 = 1, ..., N$
 $s = -\alpha_i + a_{k_2}$, $i = 1, ..., L$; $k_2 = 1, ..., N$
 $s = -\alpha_i - \alpha_j$, $i, j = 1, ..., L$. (31)

First, consider poles of the form $s=a_{k_1}+a_{k_2}=2\,\lambda_\ell$; $\ell=1,\ldots,N$. The terms in $Y_2(s)$ corresponding to the pole at $2\,\lambda_\ell$ are given by

$$Y_{2\ell\ell}(s) = \sum_{i=1}^{L} \sum_{j=1}^{L} A_{\ell\ell} \frac{1}{(\alpha_j + \lambda_{\ell})(\alpha_i + \lambda_{\ell})} \frac{1}{s - 2\lambda_{\ell}}.$$
 (32)

If the residue of the pole at 2 $\lambda\, \ell$, as evaluated using the pencil-of-functions method, is $\beta_{\,\ell\,\ell}$, it follows that

$$A_{\ell\ell} = \beta_{\ell\ell} \qquad \sum_{i=1}^{L} \sum_{j=1}^{L} \frac{1}{(\alpha_j + \lambda_\ell)(\alpha_i + \lambda_\ell)} \qquad \ell = 1, \dots, N.$$
 (33)

This procedure results in identification of N of the coefficients.

. Consider next poles of the form $s=a_{k_1}+a_{k_2}=\lambda_{\ell}+\lambda_m$ where $\ell\neq m$ and $\ell,m=1,\ldots,N$. Since $A_{\ell m}=A_{m\ell}$ for ℓ , $m\leq N$, the terms in $Y_2(s)$ corresponding to the pole at $\lambda_{\ell}+\lambda_m$ are given by

$$Y_{2\ell m}(s) = \sum_{i=1}^{L} \sum_{j=1}^{L} A_{\ell m}$$

$$\begin{cases} \frac{\alpha_{i} + \alpha_{j} + 2\lambda_{\ell}}{(\alpha_{j} + \lambda_{\ell})(\alpha_{i} + \lambda_{\ell})(\alpha_{i} + \alpha_{j} + \lambda_{\ell} + \lambda_{m})} \\ + \frac{\alpha_{i} + \alpha_{j} + 2\lambda_{m}}{(\alpha_{j} + \lambda_{m})(\alpha_{i} + \lambda_{m})(\alpha_{i} + \alpha_{j} + \lambda_{\ell} + \lambda_{m})} \frac{1}{s - \lambda_{\ell} - \lambda_{m}} \end{cases}.$$
(34)

If the residue of the pole at $\lambda\, \ell + \lambda\, m$, as evaluated using the pencil-of-functions method, is $\beta\, \ell_{lm}$, it follows that

$$A_{\ell m} = \beta_{\ell m} \begin{cases} L & L \\ \Sigma & \Sigma \\ i=1 & j=1 \end{cases} \left[\frac{\alpha_{i} + \alpha_{j} + 2\lambda_{\ell}}{(\alpha_{j} + \lambda_{\ell})(\alpha_{i} + \lambda_{\ell})(\alpha_{i} + \alpha_{j} + \lambda_{\ell} + \lambda_{m})} + \frac{\alpha_{i} + \alpha_{j} + 2\lambda_{m}}{(\alpha_{j} + \lambda_{m})(\alpha_{i} + \lambda_{m})(\alpha_{i} + \lambda_{j} + \lambda_{\ell} + \lambda_{m})} \right] \begin{cases} -1 \\ \ell, m = 1, \dots, N \\ \ell \neq m, \ell < m. \end{cases}$$

$$(35)$$

This procedure results in identification of $N(N) = \{Y, P\}$ of the coefficients.

The remaining unknown N^2 coefficients cannot be evaluated directly, as was done in equation (33) and (35), because the residues of the other poles in $Y_2(s)$ involve linear combinations of more than one unknown coefficient. However, if the number of exponential input signals, L_s is set equal to N_s N^2 linearly independent equations involving the N^2 unknown $A_{K_1K_2}$ coefficients can be obtained by considering the poles of $Y_2(s)$ of the form $s = s_1 + \lambda_1$, $t = 1, \dots, N_s$, $t = 1, \dots, N_s$, in a manner similar to the above analysis. Thus fact is proven in Reference 1. Solution of the N^2 equations completes the identification process.

B. IDENTIFICATION TECHNIQUE PROCESSING

The required identification technique processing is done or a nonreal time basis using a general purpose digital computer. The processing uses the input and output measurements of the system under test, which are obtained in real time. The computer program used to perform the identification technique processing is described in this section.

The computer program listing is presented in Appendix A. The inputs to the program include

- (1) Number of output samples, M
- (2) Sampling interval
- (3) System order, SN
- (4) Analytical description of input and output

This study assumes that the order of the system under test is known. In general, this information may or may not be known. A technique was discussed in paragraph A.B.a that resulted in determination of system order using the pencil of functions approach. This technique may be limited by the numerical accuracy of the digital computer and is an issue that ments further attention. In general, determining system order is a key problem in system identification and an in depth analysis of this problem is beyond the scope of the current study.

An important aspect of the identification technique processing is the determination of the inner product entries of the Gram matrix (equation (19)). These entries are the results of several integrations of the input and output data. When analytical or analog integration is not used, numerical integration techniques are implemented.

The input and output functions are integrated using Simpson's rule of integration (Reference 5), given by

$$\int_{a}^{b} y(t) dt = \frac{(b-a)}{6n} \left[y(0) + 4y(\Delta T) + 2y(2\Delta T) + 4y(3\Delta T) + \dots + 2y((2n-2)\Delta T) + 4y((2n-1)\Delta T) + y(2n\Delta T) \right]$$
(36)

where

$$\Delta T = \frac{b - a}{2n} = time between samples$$

2n = number of subintervals between data points. . .

The effect of numerical integration techniques on the performance of the identification technique will be addressed in Part II of this study.

The remaining processing involves matrix manipulations which are accomplished using standard FORTRAN computer subroutines, as listed in Appendix A.

C. PERFORMANCE INDICES FOR THE IDENTIFICATION TECHNIQUE

A first step in assessing the performance of given implementation of the identification technique is to establish a set of performance indices which adequately reflects that performance. This is not a simple task, as performance indices are very numerous and in many cases require subjective interpretation. The intent in this study has been to establish a set of performance indices that is used consistently for all implementations and that reflects, at least for comparison purposes, the performance of the identification technique.

Two primary performance indices were used during the study:

- (1) Percentage error between the predicted system poles and residues and the actual system poles and residues
- (2) Normalized mean-squared error between predicted system output response and actual system response.

The percentage error index of performance indicates how well the technique identifies each pole and residue of the test system. The percentage error is given by

$$E_{P_{C}} = \frac{\text{(Predicted System Pole)} - \text{(Actual System Pole)}}{\text{Actual System Pole}} \times 100$$
pole (37)

$$E_{P_{C}} = \frac{\text{(Predicted System Residue) - (Actual System Residue)}}{\text{Actual System Residue}}$$
residue x 100 (38)

The normalized mean squared error is defined by the equation

NMSE =
$$\frac{\frac{1}{T} \int_{0}^{T} (y_{p} - y_{a})^{2} dt}{\frac{1}{T} \int_{0}^{T} y_{a}^{2} dt}$$
 (39)

where

 $y_{D}(t)$ is the predicted system output to input x(t)

 $y_a(t)$ is the actual system output to input x(t)

T is the period of integration

The normalized mean squared error performance index indicates how well the predicted system response approximates the actual response to the same input. It is possible to construct this performance index in this study because the actual system response is analytically known for the systems considered. This index of performance is better than the percentage error in the sense that it evaluates the influence of errors in the poles and residues on predicting system responses. It is possible that a very large error in a pole or residue (>100 percent) will have only a minor impact on normalized mean squared error since the pole and residue contribute negligibly to the total system output.

This study considers systems whose outputs generally consist of sums of exponential functions. In these cases, the predicted system output and actual system output are represented as:

$$y_{p}(t) = \sum_{i=1}^{N} R_{p_{i}} e^{-\lambda_{p_{i}} t}$$
 $t > 0$ (40)

$$y_{a}(t) = \sum_{i=1}^{N} R_{a_{i}} e^{-\lambda_{a_{i}} t}$$
 $t > 0$ (41)

The normalized mean squared error is given by

$$NMSE = \frac{F}{D}$$
 (42)

where

$$F = \sum_{i=1}^{N} \sum_{j=1}^{N} \left[\frac{R_{p_i} R_{p_j}}{(\lambda_{p_i} + \lambda_{p_j})} \left(e^{(\lambda_{p_i} + \lambda_{p_j})} - 1 \right) - \frac{2 R_{p_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{p_i} + \lambda_{a_j})} - 1 \right) + \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{a_i} + \lambda_{a_j})} - 1 \right) \right]$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{a_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{a_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{a_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{p_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{p_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{p_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{p_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{p_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{p_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{p_i} + \lambda_{a_j})} - 1 \right)$$

$$+ \frac{R_{a_i} R_{a_j}}{(\lambda_{p_i} + \lambda_{a_j})} \left(e^{(\lambda_{p_i} + \lambda_{a_j})} - 1 \right)$$

$$D = \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{R_{a_i} R_{a_j}}{(\lambda_{a_i} + \lambda_{a_j})} \begin{pmatrix} (\lambda_{a_i} + \lambda_{a_j}) & T \\ e & & -1 \end{pmatrix}$$
(44)

One remaining issue in the area of performance indices is the interpretation of the results. The question is "How accurate must the identification technique be to achieve a satisfactory level of performance?" The absolute accuracy requirements depend on the application of the technique. If a precise description of the system under test is required, then percentage errors of 0.05 to 0.1 might be necessary. On the other hand, prediction of the poles of a system to within 10 to 20 percent may be more than adequate in some cases.

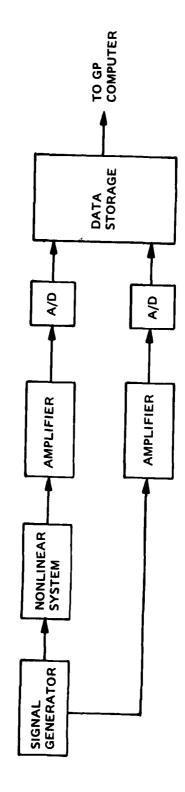
Similarly, the interpretation of the normalized mean square error (NMSE) also causes this dilemma. For this study, an arbitrary level of minimum performance has been established which corresponds to that level of NMSE induced by a 10-percent error in each pole and residue. This NMSE performance level is a function of the system under test and is established quantitatively for the test systems considered later in the report.

It should be noted that significantly better performance of the identification technique will generally be desired, but this level of minimum performance will permit determination of a set of minimum system requirements for each implementation of the technique.

SECTION III

IMPLEMENTATION FEASIBILITY STUDY

A. IMPLEMENTATION APPROACHES


The basic objective of this study phase is to establish requirements for implementation of the identification technique described in Section II. Three basic implementations were considered:

- (1) Digital the input and output of the system under test are sampled using analog-to-digital (A/D) converters and all subsequent processing is done on a general-purpose (GP) computer in nonreal time.
- (2) Hybrid the input and output of the system under test are integrated N times by analog integrators and the outputs of each integrator are sampled for further processing on a GP computer.
- (3) Analog the pencil-of-functions processing is implemented using analog components and only the inner products for the Gram matrix are sampled using A/D converters. These samples are then used in a GP computer for solution of the appropriate equations.

These implementations are discussed in paragraphs B, C, and D below and the results of the implementation feasibility study are reported.

B. DIGITAL IMPLEMENTATION

The digital implementation of the identification technique is shown in Figure 6. A signal generator excites the nonlinear system with the appropriate sum of decaying exponential functions. This input and the resultant nonlinear system output are amplified and converted into digital form via A/D converters. The resultant samples are stored in memory for future nonreal-time processing on a general-purpose digital computer using the program described in Section II.A. These input and output samples are then numerically integrated to form the appropriate inner product entries of the Gram matrix for the pencil-of-functions method of system identification.

Digital Implementation of Identification Technique Figure 6.

The requirements for each element of the digital implementation of Figure 6 are discussed in detail below.

1. A/D Converter

a. Requirements

A key clement of the digital implementation of Figure 6 is the A/D converter used to obtain the input and output data samples for identification processing. The study determined the required performance specifications for the A/D converter to achieve satisfactory identification technique performance and also assessed the state of the art in commercially available A/D converters to determine if the required specifications can be met. Performance specifications for A/D converters are numerous but the major parameters inpacting technique performance are resolution and conversion time. The requirements for these parameters were established during the study.

The identification processing computer simulation was modified to include an A/D converter model which is described in detail below.

b. Simulation Model

 $$\operatorname{\textsc{The}}\ A/D$$ converter simulation model is illustrated in Figure 7.

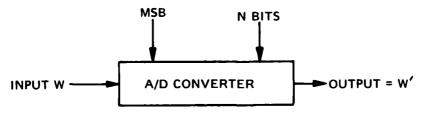


Figure 7. A/D Converter Simulation Model

The simulation inputs for the A/D converter are: (1) the most significant bit magnitude (MSB) and (2) the number of bits of resolution of the A/D converter (NBITS). The simulation converts the input to the A/D converter to a digital representation according to the input-output representation of Figure 8.

The level L in Figure 8 corresponds to the magnitude of the least significant bit. The least significant bit is related to the most significant bit by the relation

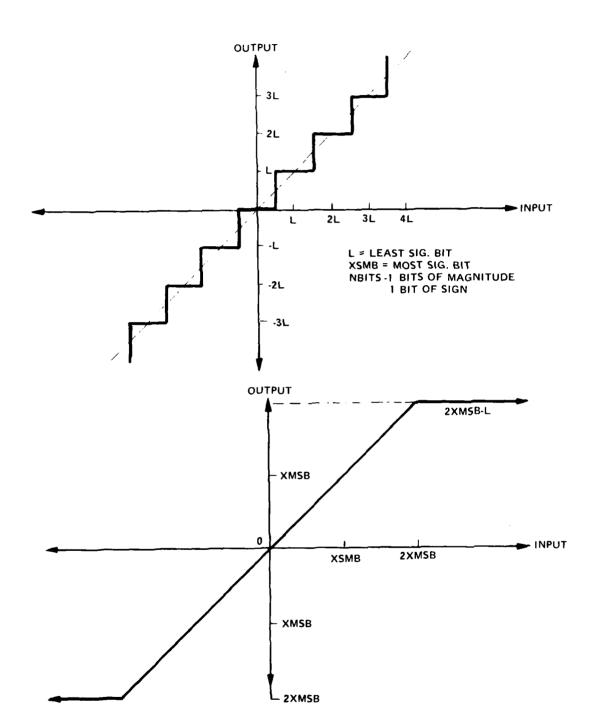


Figure 8. Digital Output Voltages vs. Input Voltage

$$L = MSB/2^{(NBITS-2)}$$
 (45)

This assumes that one bit is used to indicate the sign (positive or negative) of the input signal.

The output of an A/D converter is a string of digital 1's and 0's that represent the input voltage level. The simulation model of the A/D converter produces a decimal number that is the equivalent of these 1's and 0's. The output of the A/D converter is given by

$$W' = SIGN \cdot \sum_{i=1}^{NBITS-1} \alpha_i \cdot \frac{(MSB)}{2^{i-1}}$$

$$for \alpha_i \in \{0, 1\}$$
(46)

where SIGN = \pm depending on polarity of input voltage W.

From Figure 8, if

$$2MSB - L < W < 2MSB - L$$
 (47)

then the input voltage W is not hard limited by the A/D converter. This level determines the value of MSB to be used in the simulation to obtain greatest resolution for a given converter size.

The A/D converter simulation model is given in its FORTRAN representation in Figure 9.

Most commercially available A/D converters have a fixed full-scale input signal level (typically ± 5 or ± 10 volts). This input signal level determines the magnitude of the most significant bit at the A/D converter output. This implies that an input to the A/D converter will need to be amplified to the full scale input voltage level in order to obtain maximum resolution out of the A/D. This presents little problem to the identification technique if the amplifier is ideal (infinite bandwidth, linear) since its effect can be removed in the nonreal-time processing of the GP computer. Consequently, the simulation

```
SUBROUTINE ATOD(W, XMSB, NBITS)
   IF(NBITS.LE.O) GO TO 80
   U2=0.0
   SIGN=-1.
   IF(W.GE.O.O) SIGN=1.
   XW=W
   D=2.0*XMSB
   XW=XW*SIGN
20 DELTA2=XMSB
   DO 30 I=1.NBITS-1
30 DELTA2=DELTA2/2.
   WOUT=2.*(XMSB-DELTA2)
   DO 5 I=1, NBITS
   D=D/2.0
   Y=DABS(XW-U2)
   IF(Y.LE.DELTA2) WOUT=U2
   X=U2-D
   IF(XW.GE.U2) X=U2+D
5 U2≈X
   IF(XW.LT.DELTA2) WOUT=0.0
IF(XW.GE.(2.*XMSB-D/2.)) PRINT, "A/D HARD LIMITED SAMPLE"
70 W=WOUT*SIGN
80 RETURN
   END
```

Figure 9. Listing of FORTRAN Subroutines for A/D Converter

assumes, at this point of the study, that an ideal amplifier is used and the most significant bit of the A/D converter is set according to the level of the function input to it. The effects of a non-ideal amplifier are evaluated in paragraph B.9. below.

c. Performance Evaluation

Two representative systems were used to evaluate the performance of the identification technique and assess requirements for the components of the digital implementation. The first is a two-pole system whose linear and second-order impulse responses were determined in Reference 1. The second is a four-pole system introduced to evaluate the effects of system complexity (number of poles, N, in linear model) on technique performance. The details of these systems and the performance results are presented below.

(1) Two-Pole System Analysis and Results

The initial system selected for investigation was a two-pole linear system with an impulse response given by

$$h(t) = 2.8069192 \times 10^{5} e^{-0.011550998} (2 \pi \times 10^{6})t$$

$$-2.7368441 \times 10^{8} e^{-10.616986} (2 \pi \times 10^{6})t$$
(48)

This is a linear representation of the amplifier shown in Figure 10. The poles of the system are at 11.550998 KHz and 10.616986 MHz.

The input to the system was selected to be

$$x(t) = (1 \times 10^{-3}) e^{-10^{7}t} u(t)$$
 (49)

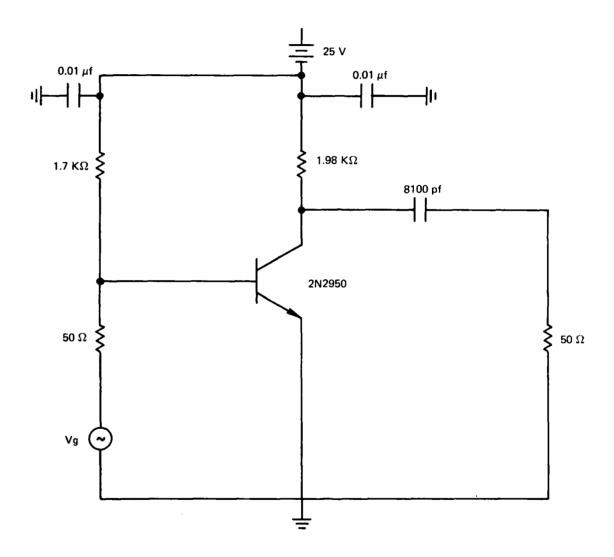


Figure 10. Common Emitter Amplifier Circuit

where u(t) is a unit step function. This corresponds to the input level required to excite the circuit in Figure 10 in linear operation. The resultant output is given by

$$y(t) = \left(2.82744 \times 10^{-4} \text{ e}^{-0.011550998} (2 \pi \times 10^{6}) t + 4.82616765 \times 10^{-2} \text{ e}^{-10.616986} (2 \pi \times 10^{6}) t - 4.85444205 \times 10^{-2} \text{ e}^{-10^{7} t}\right), t \ge 0$$
(50)

These representations of y(t) and x(t) were used in the computer program as the inputs to the A/D converter of Figure 6. To establish a baseline for performance comparison, the initial simulation run was made without an A/D converter. The accuracy of the samples was equivalent to the GP computer machine accuracy. This result is presented in Table 2 for an integration time of 9.6×10^{-6} second. Variation of the integration time and sampling interval indicated that the 9.6 μs integration time resulted in best performance. Results for other integration times/sampling intervals are shown later in this section. The results of Table 2 indicate that excellent performance is achieved using the identification technique. percentage error on all poles and residues is less than 0.05 while the normalized mean squared error is 0.41×10^{-8} . As noted earlier, the minimum level of acceptable performance was set to the normalized mean squared error corresponding to a 10-percent error in each residue and pole. For the system described by equation (48), a 10-percent error in each pole and residue corresponds to a normalized mean square error of

$$NMSE_{(10\%)} = 0.63 \times 10^{-3}. \tag{51}$$

The simulation was exercised for various levels of A/D resolution from 8 to 24 bits and the results are presented in Table 3. Figure 11 is a plot of normalized mean squared error as a function of A/D converter resolution. Figure 11 and Table 3 results indicate that little performance improvement is gained for A/D converters in excess of 16 bits resolution. The minimum performance level is exceeded for A/D converters with 10 bits or more resolution.

TABLE 2. IDENTIFICATION RESUL'S FOR PERFECT A/D CONVERTER (MACHINE ACCURACY), DIGITAL IMPLEMENTATION (9.6 LS INTEGRATION TIME)

	1			Normal Land	South The Mean	Squared Error			0.411 x 10-8	
				Percentage	Error		-0.02			-0.021
(sidues		i	Predicted	1	2.8063116 x 105 -0.02		i i	-2.7362615 x 108
	,	System Residues		Actual		2.8069192 7 105			-2.7368441 x 108	-07 v vi.
			Percentage	Error		-0.05			-0.0187	
	System Poles (MHz)			riedicied	0.01164617	90.0- 50.05			10.615088	
			Actual		0.011550998	•		11, 610000	98610.0.	

TABLE 3. RESULTS FOR LEVELS OF A/D CONVERTER RESOLUTION FROM 8 TO 24 BITS

Number of A/D Bits	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Mean Squared Error	Maximum Error in H(s) ² (dB) for 1 kHz to 100 MHz
No A/D	0.011545154	-0.05	2.8063166E5	-0.02	or I	•
Converter	10.615088	-0.01787	-2.7362615E8	-0.021	0.411 % 10-0	0.011
76	0.011550163	-0.0072	2.8068418E5	-0.00275	0000	
+ >	10.612980	-0.0377	-2.7357912E8	-0.0385	0-01 x cos.0	0.044
91	0.011537262	-0.119	2.8059592E5	-0.0342	7-01- 2010	000
67	10.621939	0.0466	-2.7381345E8	0.047	0.14/ × 10	0.029
	0.01157308	0.191	2.8108237E5	0.139	5.00	
7	10.560624	-0.5308	-2.7233161E8	-0.494	0.174 × 10-0	0.042
	0.011565797	0.128	2.8179798E5	0.394	1	0
71	10.575364	-0.392	-2.7294636E8	-0.27	0-01 x cgr-0	8c0.0
	0.010017392	-13.2	2.705787855	-3.6	4-01-0	90
	10.355187	-2.46	-2.678456E8	-2.13	0.49 A 10 1	-1.00
0	0.0048517152	-58.	-2.9278812E4	-204.3	200 0	1 - 4 - 1 - 1 - 1 - 2 - 4 - N
c	10.942193	3.06	-1.1073848E8	-59.5	0.30/	Not Calculated

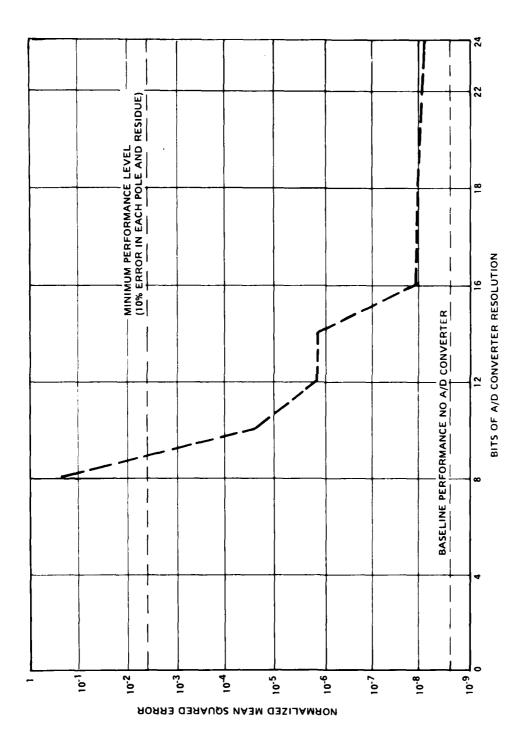


Figure 11. Normalized Mean Square Error vs. A/D Converter Resolution for Two-Pole System (Integration Time = 9.6 μs ; Sampling Time = 4 ns)

Another performance measure is indicated in Table 4 which corresponds to the maximum error in the magnitude squared of the transfer function, $|H(s)|^2$, over the frequency range of 1 kHz to 100 MHz. This error is less than 0.06 dB for A/D converters with more than 12 bits resolution.

These simulation runs were repeated for different integration time periods and sampling intervals. These results are tabulated in Tables 4 to 6 and are summarized in Figure 12. These results indicate that no significant difference in performance is noted for integration times of $4.8~\mu\,s$ or greater.

(2) Four-Pole System Analysis and Results

The two-pole system identification example presented above leads to the conclusion that it is feasible to consider an experimental implementation of the identification technique (as far as A/D converter resolution requirements are concerned). It is necessary to consider systems with more than two poles because, as the system complexity (number of poles) increases, the computational load increases and it is expected that the impact of error in the input and output samples will be greater. Therefore, a four-pole system was investigated to determine the effect of system complexity on implementation requirements and performance.

The four-pole system considered had an impulse response given by

$$h(t) = 2.8069192 \times 10^{5} e^{-0.011550998} (2 \pi \times 10^{6})t$$

$$-1.20 \times 10^{7} e^{-0.510} (2 \pi \times 10^{6})t$$

$$+1.51 \times 10^{7} e^{-0.82} (2 \pi \times 10^{6})t$$

$$-1.61 \times 10^{8} e^{-6.50} (2 \pi \times 10^{6})t$$
(52)

Several trial runs led to the selection of a 4.8 μs integration time and a 1.5 ns sampling interval. The initial set of results was run for a perfect A/D converter. These results are presented in Table 7. The results for this example indicate acceptable performance of the identification technique; however, the performance is not as good as was achieved for the two-pole example. There are several potential reasons for this lower level of performance. The first explanation is the increased

TABLE 4. RESULTS FOR LEVELS OF A/D CONVERTER RESOLUTION INTEGRATION TIME = 7.2 μs , SAMPLING INTERVAL = 3 ns

Number of A/D Bits	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Mean Squared Error	Maximum Error in H(s) 2 (dB) for 1 kHz to 1 MHz
No A/D Converter	0.011565417	0.125	2.8081012E5	0.04	0.387 × 10-7	-0.08
	10.608509	-0.08	-2.7347864E8	-0.075		0.00
91	0.011541588	-0.08	2.8067905E5	-0.0046	8-01 - 10-8	9000
2	10.615394	-0.015	-2.7365799E8	0.009	0.331 x 10 c	0.063
,	0.011528914	-0.191	2.8075629E5	-0.0229	7-01 105 0	230 0
r 1	10.611083	-0.055	-2.7360498E8	-0.029	. 07 × \$01.0	200.0
65	0.011562609	0.100	2.8222309E5	0.545	: : : : : : : : : : : : : : : : : : :	
7	10.600426	-0.156	-2.7367906E8	-0.00195	0.222 x 10-0	0.118
ç	0.011648442	0.843	2.8312792E5	0.868	0 133 \$ 10-3	0 43
	10.228063	3.66	-2.6608803E8	-2.77	0.132 A 10 =	-C-+0-
3	0.0053343822 -53.8	-53.8	-1.1663478E4	-104.0	0 0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
0	10.863888	2.32	-1.6087431E8	-41.2	0.18	Not carculated

TABLE 5. RESULTS FOR LEVELS OF A/D CONVERTER RESOLUTION, INTEGRATION TIME = 4.8 $\mu\,s$, SAMPLING INTERVAL = 2 ns

Maximum Error in Maximum Error in H(s) ² (dB) for Error 1 kHz to 100 MHz	7 - · · ·	0.154 x 10-' -0.177	L	0-622 X 10-0 0-968	<u> </u>	0.404 x 10-0		0.248 x 10-0 0.938	<u> </u>	0.196 × 10 × 23.2		not Carculated
Mea	,	-	,	• • •	,		,	Ý.	,	: 		997.0
Percentage Error	0.135	-0.032	-1.0	0.19	-0.77	0.236	0.114	0.29	4.07	6.1	-108.6	-51.
Predicted System Residues	2.8107143E5	-2.7359561E8	2.7786488E5	-2.7420457E8	2.7853243E5	-2.7432920E8	2.8101151E5	-2.7447830E8	2.9211082E5	-2.9038197E8	-2.4200426E4	-1.3392599E8
Percentage Error	0.605	-0.0427	-4.74	0.258	-4.63	0.243	-3.27	0.152	-61.6	1.85	-76.2	1.57
Predicted System Poles (MHz)	0.011620899	10.612452	0.011003596	10.644432	0.011016497	10.642807	0.011173364	10.633183	0.0044293814 -61.6	10.813444	0.0027540105 -76.2	10.783671
Number of A/D Bits	No A/D	converter	91	01	7:		61	77	•	2	α	o j

TABLE 6. RESULTS FOR LEVELS OF A/D CONVERTER RESOLUTION, INTEGRATION TIME = 2.4 $\mu\,\text{s}$, SAMPLING INTERVAL = 1 ns

Number of A/D Bits	Predicted System Poles (MHZ)	Percentage Error	Predicted System Residues	Percentage Error	Mean Squared Error	Maximum Error in H(s)2 (dB) for 1 kHz to 1 MHz
No A/D	0.012876359	11.47	2.8427807E5	1.27	904 * 10=6	90
Converter	10.613347	-0.034	-2.7372492E8	0.0148	01 A £02.0	0
	0.018471276	59.9	3.0007228E5	6.9	3000	0 11
16	10.595075	-0.206	-2.738586E8	0.0636	0.608 . 10	7.1
	0.013670863	18.35	2.8783611E5	2.54	0 206 \$ 10=5	, r,
14	10.615823	-0.011	-2.7407198E8	0.1416	0.200 A 10	
	0.0083855822 -27.4	-27.4	2.8361473E5	1.04	0 230 \$ 10-4	0 01
7	10.630804	0.13	-2.752973E8	0.589	0.235 A 10	
	0.015998973	38.5	2.9614702E5	5.5	0 10 \$ 10-3	6 8
0	10.728059	1.046	-2.793664E8	2.076	0.16 A 10	
,	0.013912348	20.4	4.1746044E5	48.7	0 596 \$ 10-2	1.28
xo	10.757434	1.32	-2.9730088E8	8.63	0.020.0	

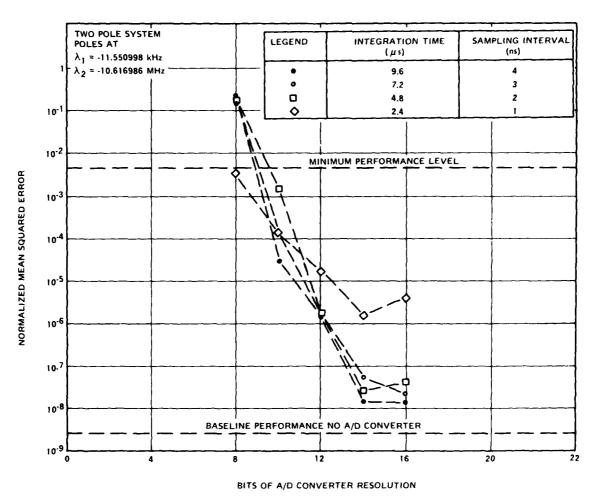


Figure 12. Results of A/D Converter Resolution Simulation Runs for Two-Pole System

TABLE 7. FOUR-POLE SYSTEM, PERFECT A/D CONVERSION

S	System Poles (MHz)	0		System Residues		
Actual	Predicted	Percentage Error	Actual	Predicted	Percentage Error	Normalized Mean Squared Error
0.011550998	0.011279618	-2.35	2.8069192 x 10 ⁵	2.789548 x 10 ⁵	-0.619	
0.510	0.4988702	-2.18	-1.20 x 10 ⁷	-1.048074 x 10 ⁷	-12.66	
0.82	0.8540037	-4.14	1.51 x 107	1.3534398 x 107	-10.36	0.103 x 10-4
6.5	6.453757	-0.71	-1.61 x 108	-1.594465 x 10 ⁸	-0.964	

computational load required to form the inner products for the Gram matrix. Each integration of input and output using the Simpson's rule integration technique results in a reduction of the number of samples that can be used for the next integration. This is illustrated below.

Consider the output samples $y_1(0)$, $y_1(T)$, $y_1(2T)$,..., $y_1(2nT)$, where nT is the nth sample and T is the sampling interval. The integral of $y_1(t)$, $y_2(t)$, as obtained using Simpson's rule, is given by the samples

$$y_2(0)$$
, $y_2(2T)$, $y_2(4T)$,..., $y_2(2nT)$.

It is noted that there are only nT samples of $y_2(t)$ whereas there were 2nT samples of $y_1(t)$. As this output is successively integrated, the time distance between samples increases and the numerical accuracy of the integration technique is expected to decrease. This will have an adverse effect on the performance of the identification technique and is a contributor to the difference in performance achieved for a two-pole system and four-pole system.

A second potential reason for the performance degradation of the identification technique is the wide-band nature of the selected system. Previous studies (Reference 6) have demonstrated that the technique should not be applied directly to wide-band systems. For these systems, the frequency range is divided into low, medium, and high ranges and the technique is applied to each range of the frequencies. The resultant transfer functions are then appropriately merged to form the total system transfer function. These are two explanations of the performance degradation experienced as system complexity increases. Part II of this study will consider this phenomenon in more detail.

The performance results of Table 7 were based on a perfect A/D conversion capability. The effect of A/D converter resolution on technique performance was investigated and the results are presented in Table 8.

The results of Table 8 indicate that satisfactory performance of the identification technique is achieved for an A/D converter with 20 bits or greater resolution. The results indicate that the identification technique predicts system poles with acceptable accuracy for a A/D converter of 12-14 bits resolution. However, the predicted residues are significantly in error for A/D conversion with less than 20 bits of resolution.

TABLE 8. SIMULATION RESULTS FOR LEVELS OF A/D CONVERTER RESOLUTION, FOUR-POLE SYSTEM, INTEGRATION TIME = 4.8 μs , SAMPLING INTERVAL = 1.5 ns

Number of A/D Bits	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
No A/D	0.011279618	-2.35	2.789548 x 10 ⁵	-0.619	
Converter	0.4988702	-2.18	-1.048074 x 10 ⁷	-12.66	
	0.8540037	4.14	1.3534398 x 10 ⁷	-10.36	0.103×10^{-4}
	6.453757	-0.711	-1.594465 x 10 ⁸	-0.964	
24	0.011284216	-2.3	2.791535 x 10 ⁵	-0.548	
	0.49891	-2.17	-1.062 x 10 ⁷	-11.5	0.108 x 10 ⁻⁵
	0.853884	4.13	1.39232 x 10 ⁷	-7.79	0.108 x 10
	6.454	-0.707	-1.6059077 x 10 ⁸	-0.254	
20	0.011199456	-3.04	2.8101495 x 10 ⁵	0.115	1
	0.498283	-2.297	-1.2463 x 10 ⁷	3.86	0.2×10^{-2}
	0.855755	4.36	1.921179 x 10 ⁷	27.2	0.2 x 10 2
	6.4495	-0.776	-1.764755 x 10 ⁸	9.6	
16	0.01050104	-9.1	3.337596 x 10 ⁵	18.9	
	0.492189	-3.49	-5.46427 x 10 ⁷	355.0	0.131 x 10 ¹
	0.877295	6.99	1.48004 x 108	880.0	0.131 x 10-
	6.40103	-1.52	-5.695889 x 10 ⁸	253.0	
14	0.01269649	5.35	4.7975 x 10 ⁵	70.9	
	0.4992365	-2.11	-1.634088 x 10 ⁸	1261.0	0.13×10^2
	0.86406	5.37	4.474 x 108	2862.0	0.13 X 10~
	6.455498	0.684	-1.4533 x 10 ⁹	802.0	
12	0.01381562	19.6	1.6083188 x 10 ⁷	5629.0	
	0.519115	1.78	-1.480015 x 10 ¹⁰	1.23 x 10 ⁵	
	0.8355322	1.89	3.653195 x 10 ¹⁰	2.41 x 10 ⁵	
	6.473508	-0.407	-1.0109 x 10 ¹¹	6.27×10^4	L

This reflects the impact of errors that result when the system output is numerically integrated four times.

These results suggest difficulty in achieving identification of systems with four or more poles because the maximum resolution of commercially available A/D converters is $16~\rm bits.$

d. A/D Conversion Time Requirements

In addition to resolution, another important A/D converter performance parameter is conversion time. The conversion time is defined as the time required for a complete measurement by an analog-to-digital converter. The conversion time defines the rate at which the input to the A/D converter can be sampled.

The sampling interval impacts the performance of the identification technique since numerical integration techniques are used to form the Gram matrix inner products. In order to determine the sampling interval required for satisfactory performance of the identification technique, the sampling rate was varied using the computer simulation. A summary of results is presented in Tables 9 through 13. Table 9 presents the results for a perfect A/D converter and Tables 10 to 13 present results for 16, 14, 12, and 10 bit A/D converters, respectively. These results are plotted in Figure 13.

These results indicate that the sampling interval should be on the order of 8 nanoseconds for the system output with an upper break frequency of 10.62 MHz. It is also observed that this interval can be increased to 24 nanoseconds with a slight degradation in performance. This implies that the sampling rate is between 41.6 and 125 MHz for a 10.6 MHz signal. If the Nyquist rate is defined as being twice the highest break frequency of the output function, or 21.2 MHz, the recommended sampling interval for the two-pole system investigated is approximately 2 to 6 times the Nyquist rate.

These conclusions could change as more complex (N > 2) systems are taken into consideration. This is due to the "shrinking number of samples" characteristic of the Simpson's rule of integration. It is necessary to sample the output of the system under test at a rate sufficient to generate enough samples for the final integration.

It is clear from these results that the sampling rate required is driven by the need for accuracy of numerical integration and not by Nyquist sampling constraints.

TABLE 9. SAMPLING INTERVAL RESULTS FOR PERFECT A/D CONVERSION, INTEGRATION TIME = 9.6 µs

Sampling Interval (ns)	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Maximum Error in H(s) (dB) for kHz to 100 MHz	Mean Squared Error
•	0.011545154	-0.05	2.8063116E5	20.0-		8-01-1
4.	10.615088	-0.01787	-2.7362615E8	-0.021	110.0	014114.0
(0.011548873	-0.0184	2.8067558E5	-0.0058	660 0	0.457 - 10-6
ø	10.589395	-0.26	-2.7296621E8	-0.26	220.0	
	0.011522691	-0.245	2.8040241E5	-0.103	0.0677	9-01
x 0	10.581431	-0.335	-2.7271069E8	-0.355	1.60.0	0.88 & 10
٠	0.011501365	-0.429	2.8019682E5	-0.176	0 1136	0 91 * 10=5
7.5	10.501581	-1.087	-2.705512E8	-1.145	00110	21 8 12.0
	0.011498709	-0.452	2.8017916E5	-0.182	138	0 19 * 10-4
Q Q	10.458732	-1.49	-2.6924843E8	-1.62	001.0	01 4 61.0
Č	0.011620742	-0.604	2.8142850E5	-0.262	124	0.285 * 10-4
24	10.540133	-0.72	-2.7047914E8	-1.17	0.123	01 v 003.0

TABLE 10. SAMPLING INTERVAL RESULTS FOR 16-BIT A/D CONVERTER, INTEGRATION TIME = 9.6 $\,\mathrm{us}$

Mean Squared Error	7-01 = 211 0	U.14(X 10-'	9-01 - 021 0	0.112 × 10 ¢	9-01	0.389 x 10-0	0	01 x coro	0 911 - 10-4	0.211 A 10 -	4-04	0.288 x 10 -
Maximum Error in H(s) ² (dB) for 1 kHz to 100 MHz	C C C	620.0	0000	6.70.0	0000	0.0978		0.103	15.0	£01.0	001	0.1199
Percentage Error	-0.0342	0.04715	-0.04613	0.1586	-0.1455	-0.2348	-0.1512	-1.221	-0.1468	-1.71	0.2715	-1.208
Predicted System Residues	2.8059592E5	-2.7381345E8	2.8056244E5	-2.7325026E8	2.8028340E5	-2.7304170E8	2.8026737E5	-2.7034192E8	2.8027978E5	-2.6900207E8	2.8145425E5	-2.7037742E8
Percentage Error	-0.119	0.0466	-0.1182	-0.1516	-0.408	-0.217	-0.3744	-1.167	-0.42	-0.42		-0.763
Predicted System Poles (MHz)	0.011537262	10.621939	0.011537338	10.600888	0.011503870	10.593911	0.011507740	10.493012	0.011502428	10.447852	0.011622867	10.535917
Sampling Interval (ns)		4	Q	0	o	0	¢	77	91	01		F-7

TABLE 11. SAMPLING INTERVAL RESULTS FOR 14-BIT A/D CONVERTER, INTEGRATION TIME = 9.6 $_{\rm D}\,{\rm s}$

Sampling Interval (ns)	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Maximum Error in H(s) (dB) for kHz to 100 MHz	Mean Squared Error
	0.011573082	0.191	2.8108237E5	0.139	0.40	5-01 - 021 0
4	10.560624	-0.5308	-2.7233161E8	-0.494	0.0428	0.1 × 51.0
(0.011551605	-0.00522	2.8087744E5	-0.0661	9000	130
٥	10.566747	-0.473	-2.7246056E8	-0.447	700	01 4 651.0
	0.011522615	-0.2457	2.8066333E5	-1.018	0 0262	0 260 - 10-5
×	10.547927	-0.6504	-2.7195890E8	-0.6305	0.000	0. x 605.0
	0.011490437	-0.524	Z.8030790E5	-0.1368	777	102 - 10-4
77	10.488631	-1.2089	-2.7030774E8	-1.233	0.11	01 v 501.0
V.	0.011485884	-0.5637	2.8021712E5	-0.169	00001	160 • 10-4
91	10.466335	-1.42	-2.694999258	-1.53	0.1922	
Č	0.011609131	0.5032	2.8166121E5	0.345	2021 0	9101
\$ 7	10.527826	-0.8397	-2.7029216E8	-1.239	0.1120	0.436 A 10

TABLE 12. SAMPLING INTERVAL RESULTS FOR 12-BIT A/D CONVERTER, INTEGRATION TIME = 9.6 μs

Squared		10-3	<i>u</i>	1013	u ;	10-3	ď	5101	4 -0 -	10-4	2-4	
Mean Squared Error		0.185 x 10-3		0.311 × 10.0		0.105 x 10-3		C-01 × 119.0	0	-01 x zz.0		. 01 x 5.0
Maximum Error in H(s) ² (dB) for kHz to 100 MHz		660.0	0000	0.1679		0.057		0.123		0.211		61.0
Percentage Error	0.394	-0.2697	0.422	-0.095	0.0428	-0.397	0.1217	-0.9568	-0.0304	-1.768	0.4977	-1.565
Predicted System Residues	2.8179798E5	-2.7294636E8	2.8187778E5	-2.7342334E8	2.8081213E5	-2.7259698E8	2.8103355E5	-2.7106579E8	2.8060646E5	-2.6884574E8	2.8208909E5	-2.6939983E8
Percentage Error	0.128	-0.392	-0.2168	-0.2754	-0.1011	-0.3957	-0.1885	-0.955	-0.468	-1.667	0.594	-1.195
Predicted System Poles (MHz)	0.01156579	10.575364	0.011525954	10.587743	0.011539311	10.574969	0.011529217	10.515567	0.011496888	10.440006	0.011619679	10.490084
Sampling Interval (ns)	7	r	9	>	a	o	13	7.7	16	0.1	<i>V c</i>	,

TABLE 13. SAMPLING INTERVAL RESULTS FOR 10-BIT A/D CONVERTER, INTEGRATION TIME = 9.6 µs

Sampling Interval (ns)	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Maximum Error in H(s) ² (dB) for kHz to 100 MHz	Mean Squared Error
•	0.010017392	-13.27	2.7057878E5	-3.6	ac	4-01 4 07 0
7 '	10.355187	-2.46	-2.678456E8	-2.13	90.1-	0.48 A 10 -
ä	0.01001557	-13.29	2,7150760E5	-3.27	00	0.7 2.10-4
Ö	10.316076	-2.83	-2.6727096E8	-2.34	60.1-	0.1 * 10
c	0.01000578	-13.37	2.7116091E5	-3.39	90	4-01-4920
x o	10.287152	-3.1	-2.6632976E8	-2.69	60.1-	0.134 x 10 *
C+	0.0099222242	-14.1	2.7140996E5	-3.30	-1 91	0 11 4 10-3
7.5	10.219084	-3.74	-2.6491260E8	-3.20	17.1	0.11 0 10
Ü	0.0099410072	-13.94	2.7199783E5	-3.097	-	0 133 \$ 10-3
0	10.164943	-4,257	-2.6339261E8	-3.76	21.1-	0.153 A 10
Č	0.010148000	-12.15	2.7214522E5	-3.045	9100	0 00 - 10-4
42	10.252004	-3.438	-2.6415126E8	-3.48	-0.913	0.68 4 10

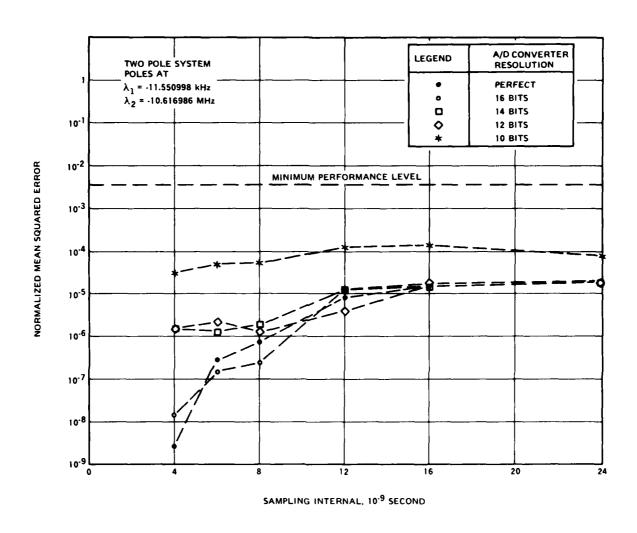


Figure 13. Results of Sampling Interval Rate Simulation for All A/D Converters

e. Second-Order Impulse Response Identification

The primary goal of the identification technique is to identify the second order impulse response of a nonlinear system. It has been shown (Reference 1) that the functional form of the second-order impulse response, $h_2(t_1,t_2)$ is given by equation (25).

The second-order response of a nonlinear system to an input given by

$$x(t) = \sum_{i=1}^{L} e^{-\alpha_i t} u(t)$$

$$(53)$$

has also been shown to be (Reference 1) given by

$$Y_{2}(s) = \sum_{k_{1}=1}^{M} \sum_{k_{2}=1}^{N} \sum_{i=1}^{L} \sum_{j=1}^{A_{k_{1}}} A_{k_{1}}^{i}$$

$$\cdot \frac{\alpha_{i} + \alpha_{j} + 2a_{k_{1}}}{(\alpha_{j} + a_{k_{1}})(\alpha_{i} + a_{k_{1}})(\alpha_{j} + \alpha_{j} + a_{k_{1}} + a_{k_{2}})} \cdot \frac{1}{s - (a_{k_{1}} + a_{k_{2}})}$$

$$- \frac{1}{(\alpha_{j} + a_{k_{1}})(\alpha_{i} + a_{k_{2}})} \cdot \frac{1}{s + (\alpha_{j} - a_{k_{2}})}$$

$$- \frac{1}{(\alpha_{i} + a_{k_{1}})(\alpha_{j} + a_{k_{2}})} \cdot \frac{1}{s + (\alpha_{i} - a_{k_{2}})}$$

$$+ \frac{\alpha_{i} + \alpha_{j} + 2a_{k_{2}}}{(\alpha_{j} + a_{k_{2}})(\alpha_{i} + a_{k_{2}})(\alpha_{i} + \alpha_{j} + a_{k_{1}} + a_{k_{2}})} \cdot \frac{1}{s + \alpha_{i} + \alpha_{j}}$$

$$(54)$$

where

$$\begin{array}{lll} \alpha_{j} \neq a_{k_{1}} & \text{for } j = 1, \dots, L; \ k_{1} = 1, \dots, M \\ \alpha_{i} + \alpha_{j} + a_{k_{1}} + a_{k_{2}} \neq 0 \text{ for } i, j = 1, \dots, L; \ k_{1} = 1, \dots, M; \\ a_{k_{1}} \neq a_{k_{2}} & \text{for } k_{2} = 1, \dots, N; \ k_{1} = N + 1, \dots, M. \end{array}$$

$$(55)$$

The quantities a_{k_1} , a_{k_2} , M and N were shown in Section II to be known from identification of the linear impulse response, $h_1(t)$. The remaining unknown quantities, $A_{k_1k_2}$ are identifiable from the residues of the second-order response. These residues are given by the equation

$$R = C^{-1}Y \tag{56}$$

where

$$R = \text{residue matrix} = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ \vdots \\ R_N \end{bmatrix}$$
(57)

$$Y = \text{output matrix} = \begin{cases} \overline{Y}_{2}(T) \\ \overline{Y}_{3}(T) \\ \overline{Y}_{4}(T) \\ \vdots \\ \overline{Y}_{N+1}(T) \end{cases}$$

$$(58)$$

where

 $\overline{y}_i = (i - 1)^{th}$ integral of y(t)

 $C = N \times N$ matrix whose ij^{th} element is defined by

$$C_{ij} = \frac{P_{j}(T)}{\lambda_{j}^{i}} - \sum_{m=1}^{i} \frac{x_{m+1}(T)}{(\lambda_{j})^{i+1-m}}$$
 (59)

where

$$P_{j}(T) = \int_{0}^{T} e^{\lambda} j \qquad x(\tau) d\tau$$
(60)

 $x_i(T) = i^{th}$ integration of input x(t) from t = 0 to t = T $x_i(t) = \delta(t)$, unit impulse

The key impact of identifying the residues of $Y_2(s)$ on the implementation requirements is the need to accurately measure $y_2(T)$, $y_3(T)$,..., $y_N(T)$, which are the integrated outputs of the nonlinear system. This is explained in detail below.

The system is excited by a input consisting of a sum of decaying exponential functions. The amplitude is selected to excite the linear and second-order responses of the system under test. The system output is $y_1(t) + y_2(t)$ where $y_1(t)$ is the linear response and $y_2(t)$ is the second-order response. The identification technique operates on $y_2(t)$ so there is a need to isolate $y_2(t)$ from the total response $y_1(t)$ + $y_2(t)$. However, since the linear impulse response of the system under test will have been identified previously, the function $y_1(t)$ is known. Therefore $y_2(t)$ can be isolated from $y_1(t) + y_2(t)$. A potential problem arises because $y_2(t)$ is typically small in magnitude compared to $y_1(t)$. The implementation equipment will measure $y_1(t) + y_2(t)$ to the prescribed resolution of the A/D converter but the resolution of $y_2(t)$ will be lower because the most significant bit of the A/D will be assigned on the basis of the peak magnitude of the input $y_1(t)$ $+ y_2(t)$.

The purpose of this part of the investigation is to determine the A/D converter resolution characteristics required to accurately identify the residues of $Y_2(s)$ and subsequently the $A_{k_1k_2}$. The second-order response of the nonlinear system to be used in this study is given by

$$y_{2}(t) = \left(2.575137 \times 10^{-3} \text{ e}^{-0.11550998} (2 \pi \times 10^{6})t\right)$$

$$-1.5725176 \times 10^{4} \text{ e}^{-10.616986} (2 \pi \times 10^{6})t$$

$$+2.3537485 \text{ e}^{-0.023101996} (2 \pi \times 10^{6})t$$

$$-3.323955 \times 10^{3} \text{ e}^{-21.233972} (2 \pi \times 10^{6})t$$

$$-1.3645 \text{ e}^{-1.603100} (2 \pi \times 10^{6})t$$

$$+1.9755175 \times 10^{4} \text{ e}^{-12.208535} (2 \pi \times 10^{6})t$$

$$-9.051956 \times 10^{2} \text{ e}^{-3.1830988} (2 \pi \times 10^{6})t$$

$$(61)$$

where the input is

$$x(t) = 10^{-2} e^{-10^{7}t} u(t).$$
 (62)

This corresponds to an approximate representation of the second-order response of an amplifier circuit whose linear impulse response is given by (Reference 1)

$$h_1(t) = \left(2.8069192 \times 10^5 \text{ e}^{-0.011550998} (2 \pi \times 10^6) t -2.7368441 \times 10^8 \text{ e}^{-10.616986} (2 \pi \times 10^6) t\right) u(t) (63)$$

This is the two-pole system being considered in detail during the study. The expression for the second-order response $y_2(t)$ is approximate because the actual response would have natural frequencies at

$$s_1 = -10.616986 \ (2 \pi \times 10^6)$$

 $s_2 = -10.628537 \ (2 \pi \times 10^6)$ (64)

These poles arise from the two poles of the linear impulse response [(s_1 = 0.011550998(2 π x 10⁶) and s_2 = 10.616986 (2 π x 10⁶)] according to the relation

$$s_1 = \lambda_2$$

$$s_2 = \lambda_1 + \lambda_2$$
(65)

Previous analyses (Reference 1) have shown that these poles will cause computational problems in evaluating the residues due to matrix inversion. In order to avoid this problem at this point of the study, y2(t) was assumed to have a single pole at S₁ = λ_2 with a residue given by the sum of the residues of λ_1 and λ_1 + λ_2 given in Reference 1. The problem of poles of the form λ_2 + λ_1 = λ_2 will be addressed in Part II of this study.

This second-order response was used in the computer simulation of the identification technique. The results are shown in Table 14. The most significant bit of the

TABLE 14. SECOND-ORDER RESPONSE RESULTS FOR A/D CONVERTERS, INTEGRATION TIME = 3.2 $\mu s,$ SAMPLING INTERVAL = 1 ns, MSB SET FOR $y_1(t)$

Number of A/D Bits	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
No A/D Converter	0.011545154	-0.0506	0.0577	0.2 x 10 ⁴	
converter	10.615088	-0.0179	-1.5745944 x 10 ⁴	0.132	
,	0.02309028	-0.0506	2.3011404	-2.23	
	21.230176	-0.0179	-3.33472 x 10 ³	0.324	0.294 x 10 ⁻⁶
i	1.6030958	-0.00036	-1.455635	6.68	
	12.206638	-0.0155	1.978457 x 10 ⁴	0.149	
	3.1830988	0	-9.047332×10^2	-0.051	
16	0.011537262	-0.1189	-0.378	-0.148 x 10 ⁵	
	10.621939	0.0466	-1.593702 x 10 ⁴	1.34716	
	0.02307452	-0.1189	2.8255933 x 10 ³	20.05	
	21.243878	0.0466	-3.4012 x 10 ³	2.32	0.694 x 10 ⁻⁵
	1.60308669	-0.000856	-2.820757	106.72	
	12.213488	0.0406	2.00318 x 10 ⁴	1.4	
	3.1830988	0	-9.003308 x 10 ²	-0.537	
14	0.01157308	0.1911	5.56	0.2 x 10 ⁶	
	10.5600624	-0.536	-1.4429517 x 10 ⁴	-8.24	
	0.02314616	0.1911	-3.68104	256	
	21.120125	-0.536	-2.8700895 x 10 ³	13.7	0.207 x 10 ⁻³
	1.60312251	0.00138	6.4197	-570.	
	12.1516118	-0.466	1.8074497 x 10 ⁴	-8.5	
	3.1830988	0	-9.3215 x 10 ²	-2.9	

TABLE 14. SECOND-ORDER RESPONSE RESULTS FOR A/D CONVERTERS, INTEGRATION TIME = 3.2 μ s, SAMPLING INTERVAL = 1 ns, MSB SET FOR $y_1(t)$ (Continued)

Number of A/D Bits	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
12	0.011565797	0.128	48.29	1.82 x 10 ⁷	
	10.575364	-0.392	-7.29475 x 10 ³	-53.6	
	0.02313159	0.128	-4.9039826 x 10 ¹	-2.18 x 10 ³	
	21.150728	-0.392	-3.602589 x 10 ²	-89.2	0.931 x 10 ⁻²
	1.603115228	0.00092	5.989077 x 10 ¹	4.49 x 10 ³	
	12.166913	-0.34	8.851946 x 10 ⁴	-55.19	
	3.1830988	0	-1.132547 x 10 ³	25.11	
10	0.010017392	-13.27	12.1	4.7 x 10 ⁵	
	10.355187	-2.465	3.967 x 10 ³	-125.2	
	0.020034784	-13.27	-21.20	-1000.	
	20.710374	-2.465	2.559803 x 10 ³	-177.	0.0242
	1.60156682	-0.095	2.63355×10^2	-1.94×10^4	
	10.365204	-2.1	-4.729866 x 10 ³	-123.9	
	3.1830988	0	-1.736826 x 10 ³	91.87	
8	0.0048517152	-58.	-0.662	-2.58×10^4	
'	10.942193	3.06	-5.3947137×10^4	243.0	
	0.00970342	-58.	-6.08179	-358.4	
	21.884386	3.06	-1.7776168 x 10 ⁴	434.8	0.254
	1.59640114	-0.418	1.6418216 x 10 ³	-1.21×10^4	
	12.533742	2.66	7.049036 x 10 ⁴	256.8	
	3.1830998	0	-7.8 x 10 ²	-13.8	

A/D converter was set by the peak level of the system total response, $y_1(t) + y_2(t)$. A plot of normalized mean squared error as A/D converter resolution is given in Figure 14.

These results indicate that 14 to 16 bits of resolution is required to achieve a reasonable level of performance.

Another set of simulation runs was made assuming that $y_2(t)$ could be isolated from the total response $y_1(t) + y_2(t)$ prior to A/D conversion. This makes it possible to set the most significant bit of the A/D converter based on the peak magnitude of $y_2(t)$. These results are presented in Table 15. A plot of normalized mean squared error versus A/D converter resolution is provided in Figure 15.

These results indicate that 10 to 12 bits of resolution are sufficient if $y_1(t)$ can be removed from the total response $y_1(t) + y_2(t)$ before A/D conversion. This will be, at best, difficult to achieve. This issue of separation of responses will be addressed in more detail in Part II of this study.

f. Additional A/D Converter Requirements

Previous paragraphs have concentrated on the A/D converter parameters of resolution and conversion time. (Cost considerations are provided in paragraph g. below). Conversion time and resolution are the key parameters because they place the most restrictions on the systems to which the identification technique can be applied. However, numerous other A/D converter characteristics must be taken into account when specifying an A/D converter. These include maximum rate of change of input, and absolute accuracy, among others.

The slew rate is an indication of the maximum rate of change of the input that the A/D converter can tolerate and still respond to individually important samples of the input. It is given by (Reference 7).

$$\frac{dV}{dt}\bigg|_{max} = 2^{-N} V_{FS}/T_{convert}$$
 (66)

where N is the number of A/D converter bits $V_{\rm FS}$ is the full scale input voltage

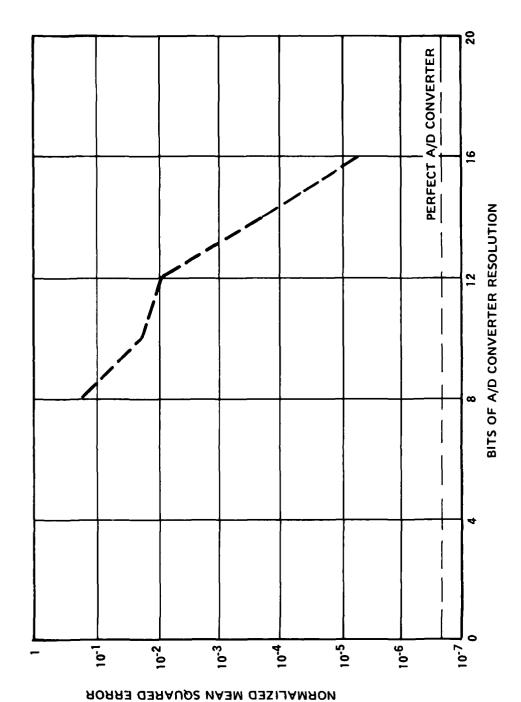
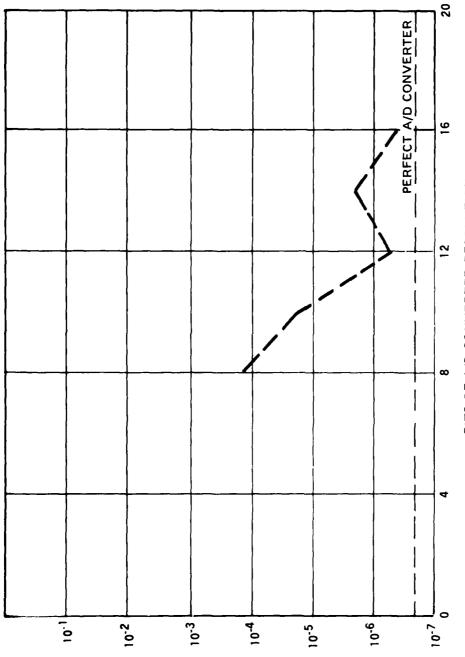


Figure 14. Second-Order System Response, Integration Time = 3.2 μs , Sampling Interval = 1 ns, MSB Set for $y_1(t)$ = $y_2(t)$


TABLE 15. SECOND-ORDER RESPONSE RESULTS FOR A/D CONVERTERS, INTEGRATION TIME = 3.2 μs , SAMPLING INTERVAL = 1 ns, MSB SET FOR $y_2(t)$

					
Number of A/D Bits	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
No A/D Converter	0.011545154	-0.0506	0.0577	2.0×10^{3}	
Converter	10.615088	-0.0179	-1.5745944 x 10 ⁴	0.132	
	0.02309028	-0.0506	2.3011404	-2.23	
	21.230176	-0.0179	-3.33472 x 10 ³	0.324	0.294 x 10-6
	1.6030958	-0.00036	-1.455635	6.68	
	12.206638	-0.0155	1.978457 x 10 ⁴	0.149	
	3.1830988	0	-9.047332 x 10 ²	-0.051	
16	0.011537262	-0.1189	-0.01467389	469.8	
	10.621939	0.0466	-1.5775605 x 10 ⁴	0.320689	
	0.02307452	-0.1189	2.3429884	-0.457	
	21.243878	0.0466	-3.344544038 x 10 ³	0.6194	0.6 x 10-6
	1.60308669	-0.000856	-1.4023495	2.774	
	12.213488	0.0406	1.98233284 x 10 ⁴	0.345	
	3.1830988	0	-9.05040566 x 10 ²	-0.0173	
14	0.01157308	0.1911	0.264	1.01 x 10 ⁴	
	10.5600624	-0.536	-1.55101118 x 10 ⁴	-1.37	
	0.02314616	0.1911	2.1085	-10.42	
	21.120125	-0.536	-3.2665676 x 10 ³	-2.03	0.292 x 10 ⁻⁵
	1.60312251	0.00138	-1.9131	40.2	
ļ	12.1516118	-0.466	1.9476245 x 10 ⁴	-1.412	
	3.1830988	0	-9.0221021 x 10 ²	-0.33	

TABLE 15. SECOND-ORDER RESPONSE RESULTS FOR A/D CONVERTERS, INTEGRATION TIME = 3.2 μ s, SAMPLING INTERVAL = 1 ns, MSB SET FOR $y_2(t)$ (Continued)

Number of A/D Bits	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
12	0.011565797	0.128	0.0599084	2.2 x 10 ⁴	
	10.575364	-0.392	-1.5615083 x 10 ⁴	-0.7	
	0.02313159	0.128	2.33371	-0.85	
	21.150728	-0.392	-3.291855 x 10 ³	-0.96572	0.681 x 10 ⁻⁶
:	1.603115228	0.00092	-2.176462348	59.2	
	12.166913	-0.34	1.961258392 x 10 ⁴	-0.72	:
	3.1830988	0	-9.0163858 x 10 ²	-0.393	
10	0.010017392	-13.27	7.2988	2.8 x 10 ⁵	
	10.355187	-2.465	-1.703214 x 10 ⁴	8.311	
	0.020034784	-13.27	2.48552×10^2	1.04 x 10 ⁵	
	20.710374	-2.465	-3.5576623×10^4	7.03	0.247×10^{-4}
	1.60156682	-0.095	-8.938179 x 10 ²	6.54 x 10 ⁴	
	10.365204	-2.1	2.1137867 x 10 ⁴	6.999	
	3.1830988	0	-1.2048383 x 10 ²	-0.00867	
8	0.0048517152	-58.	-0.002157	-16.2	
	10.942193	3.06	-1.5334697 x 10 ⁴	-2.48	
	0.00970342	-58.	1.9260158	-18.17	
	21.884386	3.06	-3.1433888 x 10 ³	-5.43	0.118 x 10 ⁻³
	1.59640114	-0,418	1.0950628 x 10 ¹	-902.	
	12.533742	2.66	1.9252994 x 10 ⁴	-2.54	
L	3.1830998	0	-9.5911069 x 10 ²	5.95	

Figure 15.

BITS OF A/D CONVERTER RESOLUTION

ИОВМАLIZED MEAN SQUARED ЕВВОВ

Tconvert is the conversion time

If the input signal changes at a rate faster than this maximum, 1 LSB changes in the input cannot be resolved within the sampling period. This problem can be alleviated somewhat by using a sample and hold circuit at the input to the A/D converter. Between conversions, the sample and hold acquires the input signal, and, just before conversion takes place, the signal is placed in hold, where it remains throughout the conversion.

$$\frac{dV}{dt}\bigg|_{max} = 2^{-N} V_{FS}/t_{apu}$$
 (67)

where t_{apu} is the aperture time of the sample and hold. The aperture time of a typical sample and hold is on the order of 2 to 3 ns. This eases the problem described above. The signal conditioning using the sample and hold also tends to improve overall accuracy of the A/D conversion process.

The absolute accuracy error of an A/D converter is the difference between the analog input theoretically required to produce a given digital output code and the analog input actually required to produce that same code (Reference 7). Absolute accuracy error can be caused by several different sources of error. A good A/D converter will have an absolute accuracy of \pm 1/2 LSB. This implies that the performance of a 16 bit converter will lie somewhere between the performance predicted for a 16-bit converter and a 15-bit A/D converter.

Other A/D converter parameters, such as input full scale voltage and output code, are not as important as those discussed above. In general they need to be addressed for the particular system under consideration.

g. Survey of Currently Available A/D Converters

The objective of this phase of the study was to survey the characteristics of commercially available A/D converters to determine if the requirements of paragraphs B.2.c and d above can be met. The key characteristics of interest for this survey were the number of bits of resolution, the conversion time, and the cost. Many companies manufacture commercially available A/D converters, and, of course, these converters vary in performance and cost over a very broad range.

It is not warranted to present a detailed listing of all available A/D converters in this report. Therefore only the general characteristics of these converters will be listed and a selected few will be reviewed in detail. Data for this survey was obtained from A/D converter specification sheets obtained from the following manufacturers (listed in alphabetical order):

Analog Devices, Inc. Analogic Corp. Beckman Instruments, Inc. Burr-Brown Research Corp. Computer Labs, Inc. Datel Systems, Inc. DDC - ILC Data Device Corp. Fairchild Semiconductor Ferranti Electric Hybrid Systems Inc. Intech Intersil, Inc. Micro Networks Corp. National Semiconductor Precision Monolithics, Inc. Teledyne Semiconductor Texas Instruments, Inc. TRW LSI Products Zeltex. Inc.

The range of available A/D converters is illustrated in Figure 16, which is a plot of A/D converter resolution bits vs conversion time, for converters with less than 1 ms conversion time. Each X represents a device corresponding to a given resolution and conversion time manufactured by one of the companies listed above.

Figure 17 is a plot of minimum conversion speed for each level of resolution. The conversion time is converted to maximum input frequency in Figure 18. Figure 18 indicates that A/D converters of high resolution (14 to 16 bits) cannot accurately convert signals of frequency greater than 100 to 125 kHz. This imposes a significant restriction on the applicability of the identification technique since the results indicate that 14 to 16 bits of A/D converter resolution is generally needed for satisfactory performance. This frequency restriction is even more constrained (20 kHz) when sampling requirements are taken into account.

The general trend of Figure 17 is that the conversion time increases as the resolution increases. The current development trend seems to be directed toward the 8 to 12 bit resolution A/D converter. The 16-bit A/D converters are significantly more costly than a lower resolution converter

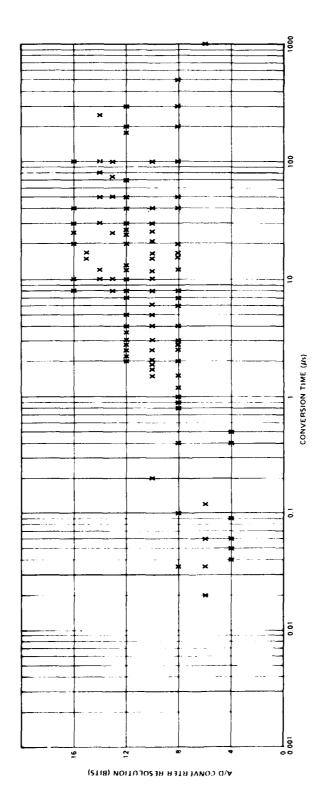


Figure 16. Available A/D Converter Characteristics

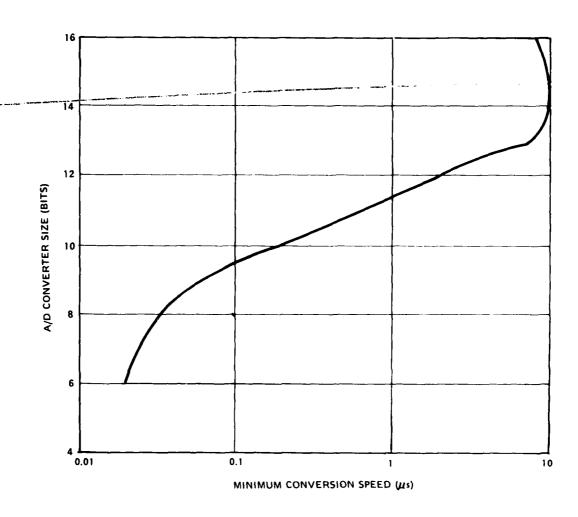


Figure 17. Current A/D Converter Coversion Speed Characteristics

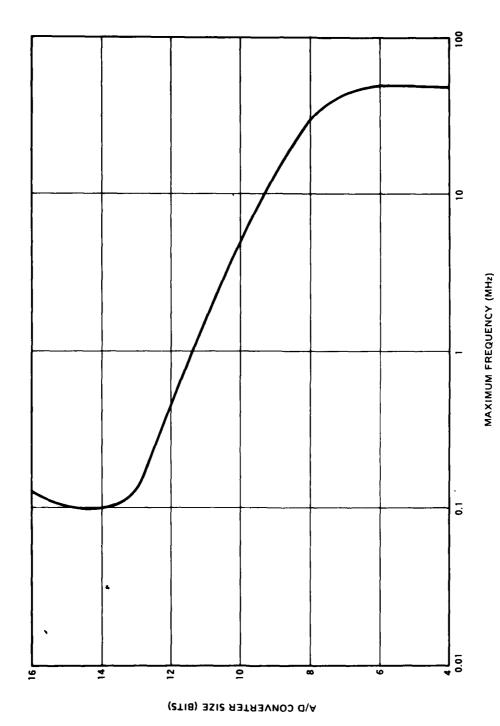


Figure 18. Current A/D Converter Frequency Characteristics

(8-12 bits) and not too many devices have appeared on the market. Commercially available 16-bit A/D converters are listed in Table 16.

TABLE 16. COMMERCIALLY AVAILABLE A/D CONVERTERS

Conversion Time (ns)	Manufacturer	Cost (dollars)
8	Intech	1500.
10	Zeltex	750.
20	Zeltex	750.
25	Analogic	1395.
30	Analogic	895.
32	Zeltex	750.
40	Intech	460.
100	Micro Networks	220.
5,000	Analog Devices	1720.
100,000	Analogic	210.
200,000	Burr Brown	270.
250,000	Intersil	

2. Amplifier Requirements

The digital implementation of the identification technique shown in Figure 6 indicates a pre-A/D converter amplifier. The purpose of this amplifier is to adjust the output of the system under test to the full-scale input level of the A/D converter. Most commercially available A/D converters have a normalized analog input signal level of ±5 or ±10 volts. In order to make complete use of the resolution capability of the A/D converter, it is necessary to adjust the level of the output of the system under test to this input level. For example, consider the two-pole system discussed in paragraph III.B.1.c.(2). This is a representation of the linear portion of an amplifier (Reference 1) and is valid only for low level input voltages (on the order of 1 millivolt). The peak system response to a 1

millivolt input is also on the order of millivolts. If a standard 16-bit A/D converter with a full-scale input voltage level of 10 volts were used in the digital implementation of the identification technique, the samples of the system response would be accurate to only about 5 bits of resolution.

This need for a pre-A/D converter amplifier complicates the identification process. This complication arises because the A/D converter samples the output of the cascaded nonlinear system and the amplifier. The identification technique processes these samples and will attempt to identify the total system, which consists of the system under test in series with the amplifier. This is illustrated in Figure 19.

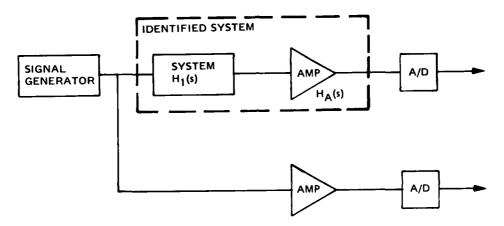


Figure 19. Identification Technique Model to Account for Amplifier

The identification technique attempts to identify the transfer function

$$H_{T}(s) = H_{1}(s) H_{A}(s)$$
(68)

where $H_1(s)$ is the transfer function of the system under test and $H_A(s)$ is the transfer function of the amplifier. The primary complication introduced by the amplifier is one of dimensionality. If $H_1(s)$ has two poles and $H_A(s)$ has two poles, the identification process will attempt to identify a four-pole system. Since $H_A(s)$ will be known, there is no difficulty in obtaining $H_1(s)$ from $H_T(s)$. It will be necessary to maintain the frequency extent of $H_A(s)$ approximately equal to that of $H_1(s)$ to avoid the wide-band problem discussed in paragraph III.B.1.c. However, the difference in the performance of the

identification technique for a two-pole system and a four-pole system was amply demonstrated in paragraph III.B.1.c.(2). These results suggest that the amplifier may unduly degrade the performance of the technique. It would therefore be advantageous to devise an approach to alleviate the complication introduced by the amplifier. Two approaches were considered during the study and these are discussed below. The first approach to solving the amplifier problem was to use an amplifier that is very wide-band compared to the system under test. This approach is based on the concept that the amplifier frequency response will not significantly affect the frequency response of interest. This is illustrated in Figure 20.

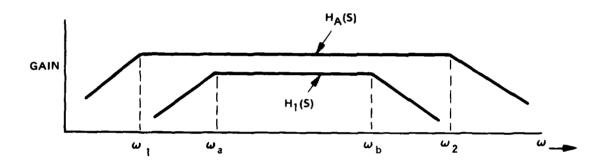


Figure 20. Frequency Extent Comparison for Test System and Amplifier

If
$$\omega_1 \ll \omega_a$$
 and $\omega_2 \gg \omega_b$, then
$$H_1(s) H_A(s) \doteq H_1(s) \tag{69}$$

Previous work on the pencil-of-functions technique (Reference 6) has demonstrated that a system can be excited such that only a limited region of its frequency extent significantly affects the output. In order to determine the bandwidth requirements of this amplifier, a set of simulation cases was run. The first amplifier considered has a transfer function given by

$$H_{A_1}(s) = \frac{100}{\left(1 + \frac{s}{\omega_1}\right)\left(1 + \frac{s}{\omega_2}\right)} \quad \omega_2 > \omega_1 \tag{70}$$

The Bode diagram of this transfer function is shown in Figure 21.

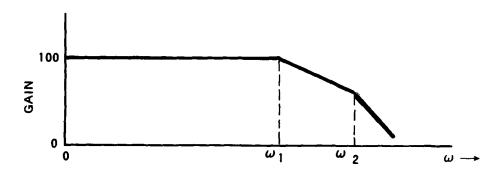


Figure 21. Bode Diagram of Amplifier with Transfer Function $H_{A_1}(s)$

This amplifier model was added to the computer simulation. The system to be identified was the two-pole system described in paragraph III.B.1.c.(1), whose transfer function is given by

$$H_{1}(s) = \frac{2.8069192 \times 10^{5}}{s + 0.011550998 (2\pi) (10^{6})} - \frac{2.7368441 \times 10^{8}}{s + 10.616986 (2\pi) (10^{6})}$$
(71)

The break frequencies of the amplifier, ω_1 and ω_2 , were varied and performance of the technique was evaluated. Since ω_1 determines the 3-dB bandwidth of the amplifier, it is the key parameter to be evaluated. The number of poles of the system to be identified was set to two in the simulation. Therefore, the identification process operates on the samples of the cascaded system (system under test and amplifier) and attempts to identify only two poles. The results of the simulation are shown in Table 17 for different values of ω_1 and ω_2 . The normalized mean squared error is plotted as a function of ω_1 in Figure 22.

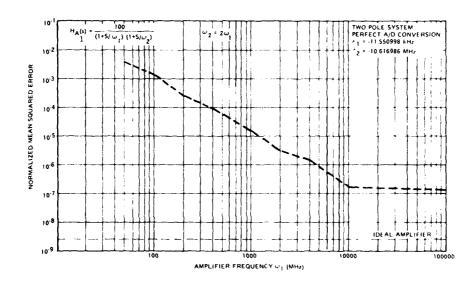


Figure 22. Normalized Mean Squared Error as a Function of ω_1

Figure 22 indicates that an upper break frequency of atleast approximately 1000 times the upper break frequency of the system under test is necessary to minimize the effect of the amplifier on identification performance.

TABLE 17. IDENTIFICATION TECHNIQUE PERFORMANCE FOR DIFFERENT AMPLIFIER CONFIGURATIONS, PERFECT A/D CONVERSION, INTEGRATION TIME = 9.6 μ s, SAMPLING INTERVAL = 4 ns

AMPLIFIER TRANSFER FUNCTION = $\frac{1}{[1+(S/\omega_1)][1+S/\omega_2)]}$

			[2 (5/2])		
Filter Poles (MHz) ^ω 1, ^ω 2	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
50	0.011696102	1.25	2.8233227 x 10 ⁵	0.584	0.57 1072
100	8.0143939	-24.51	-2.0681498 x 108	-24.43	0.57×10^{-2}
100	0.011612318	0.53	2.8139416 x 10 ⁵	0,25	0.455 10-2
200	9.1377518	-13.93	-2.3570199 x 10 ⁸	-13.88	0.155 x 10 ⁻²
200	0.011576915	0.224	2.8099455 x 10 ⁵	0.108	0.000 10-3
400	9.8365571	~7.35	-2.537214 x 10 ⁸	-7.29	0.389 x 10 ⁻³
400	0.011563444	0.1077	2.808394 x 10 ⁵	0.0525	
800	10.217587	-3.76	-2.6351158 x 10 ⁸	-3.72	0.96×10^{-4}
800	0.01156185	0.0939	2.808174 x 10 ⁵	0.0447	
1000	10.370997	-2.31	-2.6743464 x 10 ⁸	-2.28	0.35×10^{-4}
1000	0.011560029	0.0782	2.807956 x 10 ⁵	0.0369	
2000	10.447546	-1.596	-2.6938381 x 10 ⁸	-1.57	0.167 x 10 ⁻⁴
2000	0.01155798	0.06	2.8077123 x 10 ⁵	0.0282	
4000	10.524276	-0.873	-2.7133375 x 10 ⁸	-0.859	0.49 x 10 ⁻⁵
4000	0.011550391	-0.0052	2.8068824 x 10 ⁵	-0.0013	
8000	10.572337	-0.42	-2.7254702 x 10 ⁸	-0.415	0.11 x 10 ⁻⁵
8000	0.011554565	0.0145	2.8073282 x 10 ⁵	0.031	6
10000	10.581781	-0.33	-2.7279100 x 10 ⁸	-0.33	0.708 x 10 ⁻⁶
10000	0.011548797	-0.019	2.8067059 x 10 ⁵	-0.0076	0.050 - 10=6
20000	10.596042	-0.197	~2.7314685 x 10 ⁸	-0.196	0.256 x 10 ⁻⁶
100000	0.011554792	-0.033	2.8073499 x 10 ⁵	0.0153	0.100 - 10-8
200000	10.601552	-0.145	-2.7329259 x 10 ⁸	-0.143	0.136 x 10 ⁻⁶
∞	0.011545154	-0.05	2.8063116 x 10 ⁵	-0.02	0.411 . 1078
- xo	10.615088	-0.0187	-2.7362615 x 10 ⁸	-0.021	0.411 x 10 ⁻⁸

The low frequency characteristics required of the amplifier were investigated using an amplifier with a transfer function of the form

$$H_{A_2}(s) = \frac{K\left(1 + \frac{s}{\omega_1}\right)}{\left(1 + \frac{s}{\omega_2}\right)\left(1 + \frac{s}{\omega_3}\right)}$$
(72)

$$\omega_1 < \omega_2 < \omega_3$$

The Bode diagram of this transfer function is shown in Figure 23.

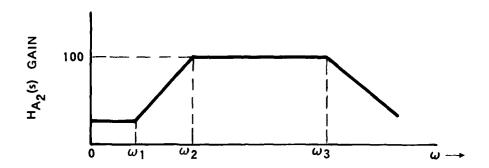


Figure 23. Bode Diagram of Amplifier with Transfer Function $\mathrm{H}_{\mathrm{A}_2}(s)$

The break frequencies of the amplifier were varied and the performance of the identification technique evaluated.

These results are summarized in Table 18. A plot of normalized mean squared error versus ω_2 for $\omega_1 = \omega_2/10$ and selected values of ω_3 is presented in Figure 24. These results indicate that the lower break frequency of the amplifier, ω_2 , should be, at least, approximately 1/1 70 of the lowest break frequency of the system under test to mainize the impact of the amplifier on the results.

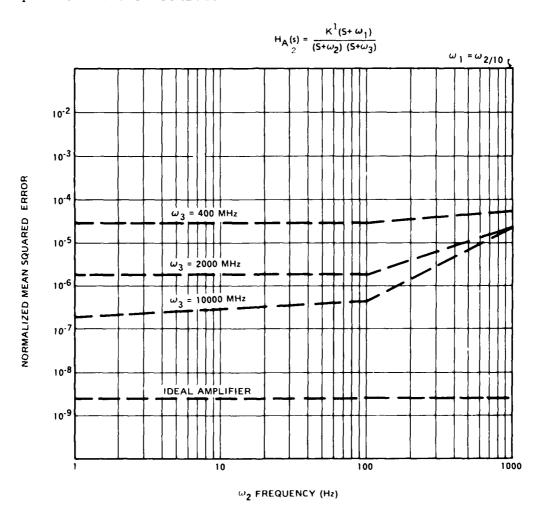
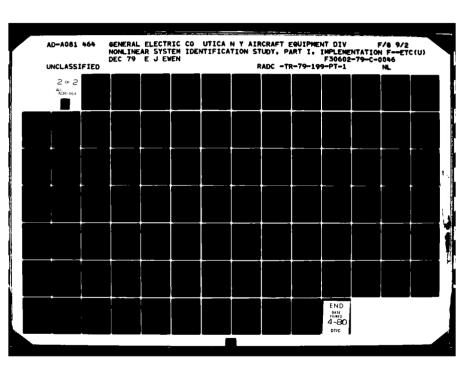



Figure 24. Identification Technique Performance as a Function of Amplifier Characteristic

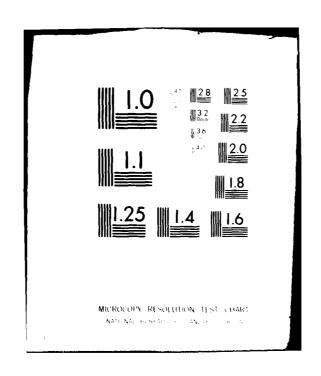


TABLE 18. IDENTIFICATION TECHNIQUE PERFORMANCE FOR DIFFERENT AMPLIFIER CONFIGURATIONS, PERFECT A/D CONVERSION, INTEGRATION TIME = 9.6 µs, SAMPLING INTERVAL = 4 ns

Amplifier Transfer Function = $\frac{K[1+(S/\omega_1)]}{[1+(S/\omega_2)][1+(S/\omega_3)]}$

			(- (-/-2/)		
Filter Frequencies (MHz)	Predicted System Poles	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
$\omega_1 = 0.0001$	0.011597292	0.4	3.0406262×10^5	8.33	
$\omega_2 = 0.001$ $\omega_3 = 400$	10.340356	-2.6	-2.6666951 x 10 ⁸	-2.56	0.78×10^{-4}
$\omega_1 = 0.00001$ $\omega_2 = 0.0001$	0.011554641	0.03	2.831267 x 10 ⁵	0.867	0.44 × 10-4
$\omega_3 = 400$	10.344142	-2.57	-2.667433 x 10 ⁸	-2.54	0.44 x 10 -
$\omega_1 = 0.000001$ $\omega_2 = 0.00001$	0.011561775	0.093	2.8105734 x 10 ⁵	0.13	0.45×10^{-4}
$\omega_3 = 400$	10.341452	-2.59	-2.6667401 x 10 ⁸	-2.56	0.45 x 10 -
$\omega_1 = 0.0000001$ $\omega_2 = 0.000001$	0.011558284	0.063	2.8080413 x 10 ⁵	0.04	0.436 x 10 ⁻⁴
$\omega_2 = 0.000001$ $\omega_3 = 400$	10.345566	-2.56	-2.6677372 x 108	-2.52	0.436 x 10 -
$\omega_1 = 0.0001$ $\omega_2 = 0.001$	0.011589247	0.33	3.0396171 x 10 ⁵	8.29	0.00 - 10-4
$\omega_3 = 2000$	10.554968	-0.584	-2.7213314 x 10 ⁸	-0.567	0.38 x 10-4
$\omega_1 = 0.00001$	0.011548494	-0.0217	2.8305334 x 10 ⁵	0.841	0.00
$\omega_2 = 0.0001$ $\omega_3 = 2000$	10.553439	-0.598	-2.7207385 x 10 ⁸	-0.588	0.26 x 10 ⁻⁵
$\omega_1 = 0.000001$ $\omega_2 = 0.00001$	0.011555324	0.0375	2.8098128 x 10 ⁵	0.103	0.234 x 10 ⁻⁵
$\omega_3 = 2000$	10.55293	-0.603	-2.7206022 x 10 ⁸	-0.593	0.234 x 10-5
$\omega_1 = 0.0000001$ $\omega_2 = 0.000001$	0.011552592	0.0138	2.8073657 x 10 ⁵	0.0159	0.015 10-5
	10.5555751	-0.577	-2.7212768 x 10 ⁸	-0.569	0.215 x 10 ⁻⁵
$\omega_1 = 0.0001$ $\omega_2 = 0.001$	0.011591676	0.352	3.0398925 x 10 ⁵	8.3	0.372 x 10 ⁻⁴
	10.589241	-0.261	-2.7300537 x 108	0.248	0.372 x 10 -
$\omega_1 = 0.00001$ $\omega_2 = 0.0001$	0.011548645	0.02	2.8305346 x 10 ⁵	0.841	0.659 x 10 ⁻⁶
	10.59398	-0.217	-2.7310357 x 10 ⁸	0.21	0.659 x 10-0
$\omega_1 = 0.000001$ $\omega_2 = 0.00001$	0.011558511	0.065	2.8101477 x 10 ⁵	0.115	0.49 x 10 ⁻⁶
	10.587531	-0.277	-2.7294168 x 10 ⁸	-0.271	0.48 X 10
$\omega_1 = 0.0000001$ $\omega_2 = 0.000001$	0.011553427	0.021	2.8074415 x 10 ⁵	0.0186	0.266 x 10-6
	10.595411	-0.2	-2.7313569 x 10 ⁸	-0.2	0.266 x 10 °
$ω_1 = 0$ $ω_2 = 0$	0.011545154	-0.05	2.8063116 x 10 ⁵	-0.02	0.411 x 10 ⁻⁸
ω ₂ = 0 ω ₃ = 0	10.615088	-0.0187	-2.7362615×10^7	-0.021	U.411 X 10-0

This approach requires that the amplifier have a bandwidth approximately 1000 times that of the system under test. This is reasonable for test systems with bandwidths on the order of 10 to 50 kHz. However, this places severe bandwidth requirements on the amplifier for test systems with 1 MHz bandwidth or greater.

In view of these performance requirements for the amplifier, another approach was investigated.

The second approach to alleviating the amplifier problem employed linear system analysis techniques. Consider once again the digital implementation of Figure 6. The input to the A/D converter, in the Laplace domain, is given by

$$Y_{O}(s) = H_{1}(s)H_{A}(s)U(s)$$
(73)

From a linear system point of view, this is equivalent to a system with a transfer function, $H_1(s)$, being excited with an input of $H_A(s)U(s)$ or as shown in Figure 25.

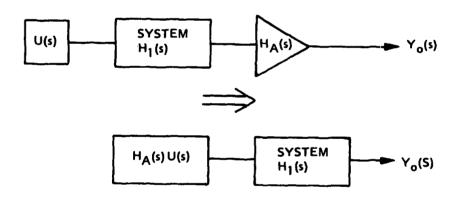


Figure 25. Linear System Equivalence Concept

This implies an equivalent technique implementation (for processing only) given by that configuration shown in Figure 26.

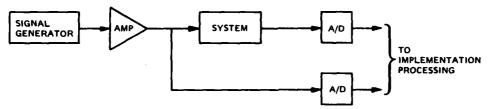


Figure 26. Equivalent Linear System Representation for Amplifier Analysis

This technique implementation was simulated for an amplifier whose transfer function was of the form

$$H_{\mathbf{A}}(s) = \left[\frac{K}{1 + \left(\frac{s}{\omega_1}\right)\right] \left[1 + \frac{s}{\omega_2}\right]}$$
(74)

The results of the performance simulation are presented in Tables 19 and 20. Graphs of normalized mean squared error for these results are shown in Figures 27 and 28. These results suggest that best performance of the identification technique is obtained when the upper break frequency of the amplifier is approximately one to two times the upper break frequency of the system under test. The reason for this behavior is that, for the integration period needed to identify the low frequency break point of the system under test, the high frequency components of the system output generated by the high frequency components of the input $[H_A(s)U(s)]$ have a negligible effect on the inner products generated for the Gram determinant. Therefore, the amplifier must have a frequency response essentially matched in bandwidth to the system under test for this approach to yield satisfactory performance.

The results indicate that similar performance is obtained using either approach. Therefore, the approach used in an actual test setup will depend on the characteristics of the system under test.

The above analysis concentrated on the frequency response characteristics of the pre-A/D converter amplifier. These characteristics will have, as shown, a profound effect on the performance of the identification technique. There are, however, many other parameters that must be considered before selecting an amplifier. These include gain, slew rate, input impedance, common mode rejection ratio, and output voltage swing, among others. The specification of these parameters depends on the particular system under test and must be evaluated accordingly.

TABLE 19. IDENTIFICATION TECHNIQUE PERFORMANCE FOR DIFFERENT AMPLIFIER CONFIGURATIONS, PERFECT A/D CONVERSION, INTEGRATION TIME = 9.6 µs, SAMPLING INTERVAL = 4 ns

Filter Poles (MHz) ^ω 1, ^ω 2	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
25	0.011555324	0.0375	2.8024309 x 10 ⁵	-0.16	0 404 40-5
50	10.592746	-0.23	-2.7282039 x 10 ⁸	-0.316	0.134 x 10 ⁻⁵
50	0.011536579	-0.12	2.7832421 x 10 ⁵	-0.84	0 100 10-4
100	10.561845	-0.519	-2.7120376 x 108	-0.906	0.196 x 10 ⁻⁴
100	0.011554257	0.028	2.7741538 x 10 ⁵	-1.16	0.45 - 10-4
200	10.497776	-1.12	-2.6912371 x 10 ⁸	-1.66	0.47 x 10 ⁻⁴
200	0.011531949	-0.164	2.8450411 x 105	1.36	0.000 - 10-4
400	10.814967	1.86	-2.8077018 x 10 ⁸	2.59	0.909 x 10 ⁻⁴
400	0.011543181	-0.0677	2.9494878 x 10 ⁵	5.08	0.000 40-3
800	11.190547	5.4	~2.9555270 x 10 ⁸	7.99	0.962 x 10 ⁻³
700	0.011498102	-0.457	2.9802372 x 10 ⁵	6.17	0.450 - 40-2
800	11.395104	7.33	-3.0261627 x 10 ⁵	10.6	0.153 x 10 ⁻²
2000	0.011502276	-0.42	3.0687918 x 108	9.32	0.322 x 10 ⁻²
4000	11.708577	10.28	-3.1528646 x 10 ⁸	15.2	0.322 x 10 ⁻²
No Filter	0.011545154	-0.05	2.8063116 x 10 ⁵	-0.02	0.411 - 10-8
	10.615088	-0.0187	-2.7362615 x 10 ⁸	-0.021	0.411 x 10 ⁻⁸

TABLE 20. IDENTIFICATION TECHNIQUE PERFORMANCE FOR DIFFERENT AMPLIFIER CONFIGURATIONS, PERFECT A/D CONVERSION, INTEGRATION TIME = 9.6 μ s, SAMPLING INTERVAL = 4 ns

Filter Poles (MHz) ω ₁ , ω ₂	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
10	0.011528838	-0.1918	2.8048702 x 10 ⁵	-0.0908	0.505 10-6
11	10.650187	0.3127	-2.7449821 x 10 ⁸	0.297	0.597×10^{-6}
11	0.011566252	0.132	2.8083652 x 10 ⁵	0.0515	
12	10.590722	-0.247	-2.7302155 x 10 ⁸	-0.242	0.389 x 10 ⁻⁶
12	0.011539614	-0.098	2.8054255 x 105	-0.0532	
13	10.633535	1.559	-2.7407930 x 10 ⁸	0.144	0.148 x 10 ⁻⁷
13	0.011560636	0.0834	2.8076305 x 10 ⁵	0.025	
14	10.601234	-0.148	-2.7327608 x 10 ⁸	-0.199	0.147 x 10 ⁻⁶
14	0.011588640	0.326	2.8015747 x 10 ⁵	0.13	0.17 x 10-5
15	10.561955	-0.518	-2.7230306 x 10 ⁸	-0.505	0.17 * 10-5
15	0.011540601	-0.09	2.805308 x 105	-0.057	0.91 x 10 ⁻⁷
16	10.629664	0.119	-2.7397023 x 10 ⁸	0.104	0.91 * 10-
16	0.011559574	0.074	2.8072548 x 105	0.0119	0.12 x 10-6
17	10.603475	-0.127	-2.7331924 x 108	-0.133	0.12 * 10-0
17	0.011514039	-0.3199	2.8022400 x 10 ⁵	-0.166	0.133 x 10 ⁻⁵
18	10.666838	0.469	-2.7487678 x 10 ⁸	0.435	0.133 x 10-0
18	0.011555627	0.04	2.8066038 x 10 ⁵	-0.0112	0.93 x 10 ⁻⁷
19	10.606738	-0.965	-2.7338636 x 10 ⁸	-0.1089	(0.83 x 10 ,
19	0.011542878	-0.0703	2.8051016 x 10 ⁵	-0.0647	0.467×10^{-7}
20	10.621596	0.0434	-2.7374330 x 10 ⁸	0.0215	0.401 x 10 .
20	0.011528307	-0.196	2.8033879 x 10 ⁵	-0.126	0.33 x 10 ⁻⁶
21	10.640706	0.223	-2.7420633 x 10 ⁸	0.191	0.33 x 10 °

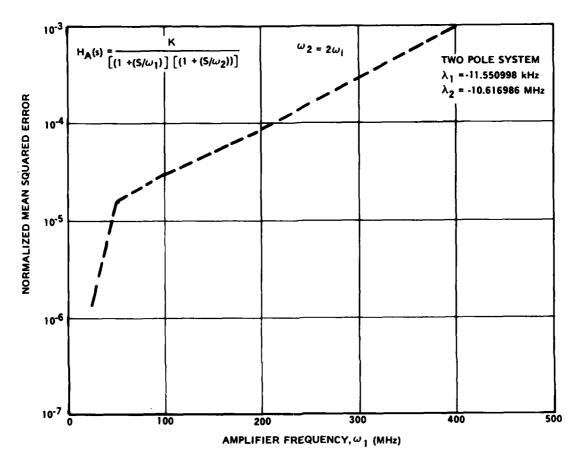


Figure 27. Identification Technique Performance as a Function of Amplifier Characteristics

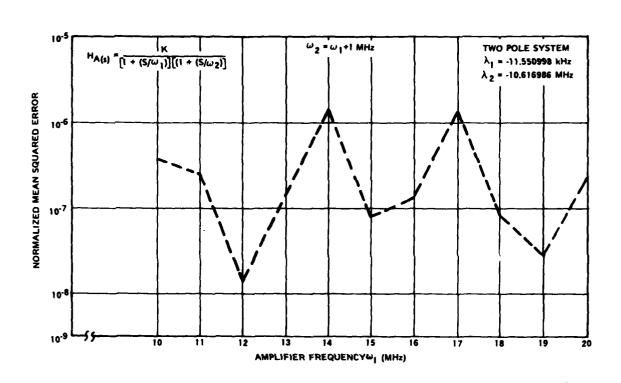


Figure 28. Identification as a Function of Amplifier Characteristics

The required gain of the amplifier is a function of the peak output voltage of the nonlinear system under test and the full-scale input voltage of the A/D converter. This gain can be achieved, if necessary, by cascading multiple amplifiers with similar frequency responses. Common mode rejection needs to be considered because of the small signals that will most likely be generated by the nonlinear system under test. Noise will be a critical factor in implementing a viable experimental measurement setup for the technique and the amplifier common mode rejection capability is a measure of how well noise can be eliminated from the amplifier output. The remaining parameters (slew rate, output voltage swing, etc.) must be specified to be compatible with the other devices of the measurement implementation and with the output of the system under test.

A survey of available amplifier characteristics reveals again a multitude of devices and manufacturers. The wide-band operational amplifiers have a gain-bandwidth product which typically lies in the range of 10 to 200 MHz. (Teledyne Philbrick and Burr Brown make operational amplifiers with a gain bandwidth product of 1000 MHz. This was the maximum gain-bandwidth product determined during the survey.) These devices typically have a frequency response which is flat from dc to BW/10, where BW = 3 dB bandwidth.

Several of these devices are recommended by the manufacturer for use as pre-A/D converter amplifiers in an implementation considered here.

The available amplifiers appear to be compatible with the existing A/D converters for application to the identification technique implementation for either of the two approaches described above. The fastest high resolution A/D converter (14 to 16 bits) was on the order of 125 kHz sampling rate. In one approach described above, the required amplifier bandwidth would be 1000 times the upper break frequency of the system under This upper break frequency would be less than 125 kHz due to sampling considerations but an amplifier bandwidth of 1000 (125 kHz) = 125 MHz would provide the required frequency response. This bandwidth is achievable with a gain of 8 using the 1000 MHz gain bandwidth product device described above. Cascading several of these devices will provide the required gain. If the sampling requirements are taken into account, the system under test would be limited to 20 kHz which would necessitate a 20-MHz amplifier bandwidth which is achievable with the above device having a gain of 50.

The implementation feasibility of the digital configuration of the identification technique does not appear to be limited by amplifier technology at this point in time. The A/D converter remains the critical component in the digital

implementation and its characteristics will determine the overall feasibility of implementing the identification technique.

The amplifier survey was based on amplifier specification data supplied by the following manufacturers:

Plessey Semiconductors
Analog Devices
Harris Semiconductor Products Division
Fairchild Semiconductor
National Semiconductor
Amplifier Research
M.S. Kennedy Corp.
Teledyne Philbrick
RCA
Precision Monolithics
Datel Systems, Inc.
Burr Brown Research Corp.

3. Signal Generator Requirements

The identification technique requires that an input function of the form

$$\mathbf{x}(t) = \sum_{i=1}^{N} e^{-\alpha t} u(t)$$
 (75)

be used to excite the system for identification of $h_2(t_1,t_2)$. The identification of $h_1(t)$ may use an arbitrary waveform (Reference 4) but it would be convenient if the same waveform generator could be used for identification of $h_1(t)$ and $h_2(t_1,t_2)$.

The input, which consists of a sum of decaying exponentials or even a single decaying exponential, is not a convenient waveform in terms of commercially available signal generators. The vast majority of waveform/signal generators provide the square wave, sine wave and triangular waveforms with pulse and frequency modulation options. No commercially available waveform generator with a specific exponential function output was found during the survey of waveform generator manufacturing companies.

The only potential signal generator candidate for use in the identification technique was a system manufactured by WAVETEK. This system was the WAVETEK Model 175 Arbitrary Waveform Generator. This device is a programmable waveform generator which permits the user to store waveforms as digital points on a 256 x 255 grid. The data points are stored in four random access memories (RAM) and are entered via a panel keyboard interface.

This signal generator is a very capable device but has some limitations that will affect its use in the identification technique. The output of the signal generator is piece-wise continuous linear between sample points which results in a distorted exponential input. The dynamic range of the device is 20 volts to 2 millivolts. This corresponds to a limitation imposed by a 13 bit A/D converter operating on an analog waveform generator. The output amplitude resolution is 1/256 which restricts the time period over which the exponential input can be used for the identification technique.

For the two-pole example of interest, the input $x(t) = 10^{-3}e^{-10.7t}u(t)$ would be resolved only to a minimum amplitude of 3.9 x 10^{-6} which corresponds to a integration period of approximately 5.5 x 10^{-7} second. Beyond this time period, the input function would be zero.

Although the arbitrary waveform generator provides a level of capability beyond the typical commercially available waveform generator, it does not appear to meet the accuracy requirements of the identification technique.

The conclusion of the survey of commercially available signal/waveform generators is that no signal generator on the present market can generate a sum of decaying exponential functions. This requires that a circuit be designed to provide this input.

There are several options available at this point. The first option is to use the system shown in Figure 29.

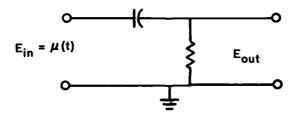


Figure 29. RC Networks

The output voltage of this system is

$$E_{0}(s) = \frac{1}{s + \frac{1}{RC}}$$
 (76)

or, in the time domain

$$e_0(t) = e^{(-1/RC)t} u(t)$$
 (77)

This is the function required -- a decaying exponential. The circuit is driven by a unit step input which is easily generated using standard equipment.

A sum of decaying exponentials can be generated using several of these passive networks in parallel with their outputs summed using an operational amplifier as a summary amplifier. The time constants (1/RC) of each network are set by appropriate selection of R and C. One requirement is that the input impedance of the summing amplifier not load down the passive network and effectively change the time constant.

Another implementation of the signal generator is to use an operational amplifier as shown in Figure 30.

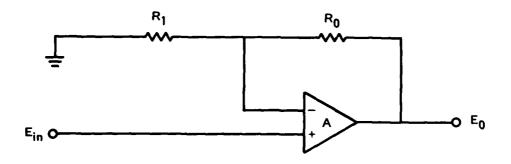


Figure 30. Operational Amplifier Network for Signal Generator

The closed loop transfer function of this amplifier circuit is

$$G_{c}(s) = \frac{\frac{R_{0} + R_{1}}{R_{1}}}{1 + \frac{s}{2\pi f_{0}A_{0}} \left(\frac{R_{0} + R_{1}}{R_{1}}\right)} = \frac{K}{1 + \frac{s}{\omega_{0}'}}$$
(78)

where

$$K = (R_0 + R_1)/R_1, \omega'_0 = 2 \pi f_0^A_0/K$$

and f_0 is the high frequency cutoff of the operational amplifier.

The impulse response of this network is

$$e_0(t) = K \omega_0' e^{-\omega_0' t} = 2\pi f_0 A_0 e^{-\omega_0' t}$$
 (79)

A practical impulse is actually a short pulse of width δ . For this practical impulse, the output of the circuit is

$$e_{0}(t) = (K - K e^{-\omega_{0}'t}) u(t) \qquad 0 \le t < \delta$$

$$= K (e^{\delta\omega_{0}'} - 1) e^{-\omega_{0}'t} \qquad t \ge \delta$$
(80)

This output is shown in Figure 31.

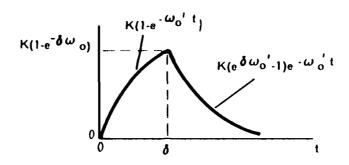


Figure 31. Short Pulse Response of Operational Amplifier Network of Figure 30

The portion of the output of the operational amplifier that represents the exponential input is for $t > \delta$. Therefore it is necessary to use an analog switch to clamp the operational amplifier from time t=0 to $t=\delta$.

The amplitude of the exponential function generated by the operational amplifier will be controlled by an attenuator connected in series with the operational amplifier circuit. The unattenuated amplitude of the decaying exponential is

$$\frac{R_{0} + R_{1}}{R_{1}} \left(\frac{\delta \left(\frac{2\pi f_{0} A_{0} R_{1}}{R_{0} + R_{1}} \right)}{e^{-R_{0} + R_{1}}} \right)$$
(80a)

The time constant is a function of the open-loop gain (Λ_0) of the operational amplifier, the open-loop 3-dB bandwidth (f_0), and the resistors R_1 and R_0 . The open loop gain and bandwidth are functions of the operational amplifier selected for use while R_1 and R_0 are selectable at the discretion of the user.

A sum of decaying exponential functions can be generated by exciting a parallel set of these operational amplifier networks with the same input pulse and using a summing operational amplifier configuration to add the functions. The analog switch is then used to clamp the output until time $t = \delta$. A sample configuration for N = 2 is shown in Figure 32.

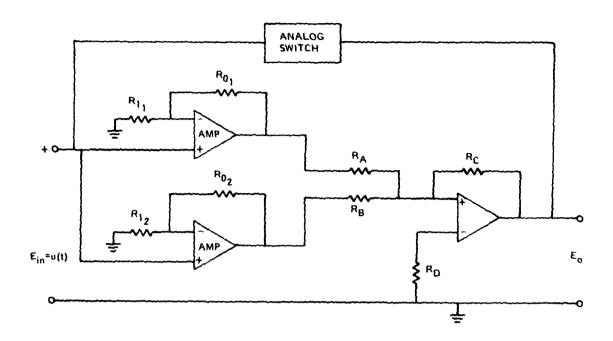


Figure 32. Signal Generator Configuration for N = 2

The output is the negative sum of the input exponential functions. This can be reinverted using another inverting operational amplifier. Proper selection of R_A , R_B , and R_C will serve to properly attenuate the amplitude of each exponential function prior to summing. The output of this system is

$$e_{0}(t) = -\left(\frac{R_{c}}{R_{A}} \frac{\left(\frac{R_{0_{1}} + R_{1_{1}}}{R_{0}}\right) \left(e^{\delta \omega_{0_{1}}'t} - 1\right) e^{-\omega_{0_{1}}'t}}{\left(e^{\delta \omega_{0_{2}}''t} - 1\right) e^{-\omega_{0_{2}}'t}} + \frac{R_{c}}{R_{B}} \frac{\left(\frac{R_{0_{2}} + R_{12}}{R_{0_{2}}}\right) \left(e^{\delta \omega_{0_{2}}''t} - 1\right) e^{-\omega_{0_{2}}'t}}{\left(e^{\delta \omega_{0_{2}}''t} - 1\right) e^{-\omega_{0_{2}}'t}}$$
(81)

where

$$\omega_{0_{i}'} = \left(\frac{\frac{2\pi f_{0_{i}} A_{0_{i}}}{R_{0_{i}} + R_{1_{i}}}}{\frac{R_{0_{i}}}{R_{0_{i}}}}\right), \quad i = 1, 2.$$
(82)

4. Data Storage Requirements

The data storage requirements for the digital implementation are a function of the number of A/D converter bits and the number of samples required for the input and output. The number of digital bits requiring storage for the digital implementation is given by

Data Bits =
$$2 \frac{T}{T_S} \cdot M$$
 (83)

where

T is the integration period

Ts is the sampling interval

M is the number of A/D converter bits

The integration period and sampling interval are a function of the system under test and it is difficult to establish a fixed number for these values. For the example systems, the maximum number of samples used was 3200. This was limited by the memory capacity of the GP computer used for the simulation. For this case the number of data bits to be stored for a 16 bit A/D converter is

Data Bits = 2(3200)(16) = 102,400 bits

An upper limit of 8000 samples seems to be reasonable for systems to which the technique can be applied with existing components. This requires a storage capacity of

Data Bits = 2(8000)(16) = 256,000 bits

The data bits can be stored using static RAM. RAM's with a 2048 word x 8 bits organization are currently available. Two of these are required to store 2048 words of 16 bit length. To store 16,000 words of 16 bit length requires 16 of these RAM chips. These devices have a typical access time of 200 ns, which is an indication of the time required to write an 8-bit word into memory. This is easily compatible with the fastest 16-bit A/D converter presently available (conversion time = 8 μ s).

Although establishing a maximum level of data storage required is difficult, it appears that memory devices are available to handle the data storage for any practical implementation of the identification technique. As the number of samples increases and as data storage requirements increase,

it will, of course, be necessary to build a larger memory by adding chips and any necessary interface circuitry at additional cost. However, the capability is available if needed, and the data storage requirements do not appear to be technology limited at this time. The only limitation of these devices could be in the area of the access time. However, these devices are one to two orders of magnitude faster than the currently available A/D converters. This trend will probably be maintained as both memory technology and A/D converter technology advance.

Once the data is stored in the static RAM, it is necessary to transmit this data to the appropriate storage device for future non-real time processing using the GP computer. This storage device may be a time sharing data file, magnetic tape, paper tape, or punched data cards. Data transmission is most easily accomplished using a device such as a USART (Universal Synchronous/Asynchronous Receiver/Transmitter, Intel 8251A). This device is a programmable communication interface capable of transmitting the data from the RAM to the permanent storage device.

5. Digital Implementation - Conclusions

The performance evaluation of the digital implementation of the identification technique suggests that the critical components of the digital implementation are the A/D converter and the pre-A/D converter amplifier. The important conclusions impacting parameter specification of these devices are summarized below.

a. A/D Converter

- (1) The A/D converter must have 14-16 bits of resolution for adequate performance with a two-pole system. This increases to 20 to 24 bits as the number of poles increases to four. Since the highest resolution commercially available A/D has 16 bits of resolution at this point in time, any experimental validation of this implementation should be restricted to systems with two poles or fewer.
- (2) The sampling rate requirements for the A/D converter are driven by the accuracy requirements of the processing technique. For a two-pole system, the sampling rate should be 4 to 10 times slower than the highest break frequency of the system under test. The fastest 16 bit A/D converter currently available is limited to a sampling

rate of 125 kHz. This implies that the system under test must be limited to an upper break frequency of approximately 10 to 30 kHz.

b. Amplifier

(1) Three approaches to the identification problem are designed to handle the complication of using a pre-A/D converter amplifier. The first approach is to use the identification technique directly and identify a transfer function that is the product of the transfer functions of the system under test and the amplifier. This increases the dimension of the identification problem, which will probably degrade performance of the identification technique. This approach requires an amplifier that is approximately equal in frequency extent to the system under test.

The second approach is to use a very wide-band (compared to system under test) amplifier. The lower 3-dB break frequency of the amplifier should be 1/1000 of the lower break frequency of the test system. The upper 3-dB break frequency of the amplifier should be 1000 times the upper break frequency of the test system.

The final approach is to use linear system theory to modify the required identification processing. This requires that the amplifier be approximately matched in frequency extent to the system under test.

- (2) Operational amplifiers with gain-bandwidth products up to 1000 MHz are presently commercially available. These will work well with all the processing approaches described in (1) above.
- (3) The amplifier gain requirement is determined by the peak output voltage of the system under test and the full-scale input voltage of the A/D converter.

c. Remaining Components

The remaining components of the digital implementation did not appear to be technology limited in terms of enabling implementation of the identification technique. The important conclusions are given below.

- (1) There is no commercially available waveform generator with an exponential function capability. The appropriate inputs will be generated by using operational amplifiers as low-pass filters and appropriately damping the short pulse response to obtain the exponential function.
- (2) Data storage is accomplished using static random access memory (RAM) chips and a programmable interface to transmit the data to the digital computer for nonreal-time processing.

d. Summary

The analysis of the digital implementation supports the following important conclusion. The pencil-of-functions technique requires high accuracy to perform identification satisfactorily. This accuracy is impacted by the choice of the numerical integration technique used in the processing. Simpson's rule of numerical integration results in increased error as the number of system poles increases. There is a need to determine the best integration technique for the identification processing. This issue will be dealt with in more detail during Part II of the study.

Given the constraints presented above, the digital implementation of the identification technique can feasibly be constructed and used in an experimental test setup.

A remaining issue is the problem of noise in the implementation. A 16-bit A/D converter with a 10 volt full-scale input can resolve a signal of 152 microvolts. These low level signals require careful handling to reduce the impact of noise on the performance of the technique. The devices used in the implementation must be extremely low noise components and advantage must be taken of any common mode rejection capability available in the measurement configuration.

C. HYBRID IMPLEMENTATION

During the investigation of the digital implementation, it became apparent that the numerical integration of the A/D con-

verted samples was a primary source of performance degradation. A hybrid implementation of the identification technique was postulated to possibly alleviate this performance degradation. This implementation is shown in Figure 33. The input and output of the test system are integrated N times using analog integrators. The integrator outputs are appropriately amplified and sampled by a set of A/D converters. These samples are then stored for further nonreal-time pencil-of-functions processing on the GP computer.

The potential advantages of this configuration are that it will minimize the error in the integrated outputs by eliminating the need for numerical integration of the outputs. (The inner products will still be formed using numerical integration of the products of the A/D converted samples.) In addition, this implementation eliminates the "shrinking number of samples" problem encountered using Simpson's rule as discussed in Section II.B. However, this implementation has several disadvantages when compared to the digital implementation of paragraph III.B. are apparent from Figure 33 where it is observed that 2N + 1 A/D converters are required for implementation as well as 2N + 1 analog integrators and 2N + 1 amplifiers. The digital implementation required only two A/D converters and two amplifiers. a complex system (N large), this implementation could become complex and costly compared to the digital system. Another disadvantage lies in the fact that N must be known before the final implementation configuration is established. This complicates the procedure of evaluating N since the measurement setup must be changed for each iteration of the procedure to evaluate system order. It is recommended that the system order be established using the digital approach if possible and that the hybrid implementation be used only for pole and residue determination if its performance warrants its use. The performance of the implementation is addressed in the following sections.

1. Simulation of Hybrid Implementation

The simulation of the identification technique was modified to represent the hybrid implementation. The numerical integration process was deleted and the analytical expressions for the integrated outputs and inputs were inserted into the program. A listing of the simulation for this implementation is provided in Appendix B.

The general form of the output of the system under test is

$$y(t) = \sum_{i=1}^{N} C_i e^{\lambda_i t}$$
(84)

Figure 33. Hybrid Implementation

The resulting integrations yield

$$\overline{y}_{2}(t) = \int_{0}^{t} y(\tau) d\tau = \sum_{i=1}^{N} \frac{C_{i}}{\lambda_{i}} (e^{\lambda_{i}t} - 1)$$
(85)

$$\overline{y}_{3}(t) = \int_{0}^{t} \overline{y}_{2}(\tau) d\tau$$

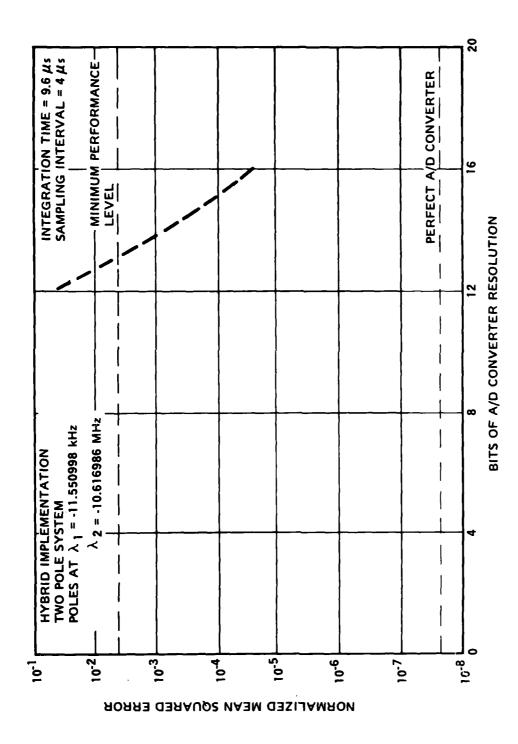
$$= \sum_{i=1}^{N} \left[\frac{C_{i}}{\lambda_{i}^{2}} \left(e^{\lambda_{i} t} - 1 \right) - \frac{C_{i}}{\lambda_{i}} t \right]$$
(86)

$$\bar{y}_4(t) = \int_0^t \bar{y}_3(\tau) d\tau = \sum_{i=1}^N \left[\frac{c_i}{\lambda_i^3} (e^{\lambda_i t} - 1) - \frac{c_i}{\lambda_i^2} t - \frac{c_i}{2\lambda_i} t^2 \right]$$
 (87)

$$\frac{1}{y_{5}}(t) = \int_{0}^{t} \overline{y_{4}}(\tau) d\tau = \sum_{i=1}^{N} \left[\frac{C_{i}}{\lambda_{i}^{4}} (e^{\lambda_{i}t} - 1) - \frac{C_{i}}{\lambda_{i}^{3}} t - \frac{C_{i}}{\lambda_{i}^{2}} \frac{t^{2}}{2} - \frac{C_{i}}{6\lambda_{i}} t^{3} \right]$$
(88)

The general form of the input is

$$x(t) = A_i e^{a_i t}$$
 (89)


and the resultant integrations are similar in form to those for y(t) (setting N = 1).

2. Two-Pole System Analysis and Results

The two pole system investigated in paragraph III.B was used to evaluate the performance of the hybrid implementation. The performance results for this implementation are shown in Table 21 for different A/D converter resolutions. Figure 34 is a plot of normalized mean squared error vs A/D converter resolution. These results indicate that this approach does not

TABLE 21. SIMULATION RESULTS FOR HYBRID IMPLEMENTATION FOR FOR DIFFERENT LEVELS OF A/D CONVERTER RESOLUTION, INTEGRATION TIME = 9.6 μs , SAMPLING INTERAL = 4 ns

Number of A/D Bits	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Square Error
No A/D Converter	0.011554792	0.0328	2.8073336 x 10 ⁵	0.0147	0.356 x 10 ⁻⁷
16	10.60926 0.011620211	-0.0727 0.599	-2.7349133 x 10 ⁸ 2.8009951 x 10 ⁵	-0.705 -0.211	
]	10.34654	-2.54	-2.667889 x 10 ⁸	-2.52	0.436 x 10 ⁻⁴
14	0.012683786	9.807	2.8531059 x 10 ⁵	1.64	0.809 × 10 ⁻³
	9.5219201	-10.31	-2.4551532 x 10 ⁸	-10.29	
12	0.023587263	104.2	3.9067486 x 10 ⁵	39.18	0.589 x 10 ⁻¹
	4.4864759	-57.7	-1.210728 x 10 ⁸	-55.76	

Hybrid Implementation Identification Performance as a Function of A/D Converter Resolution Figure 34.

perform as well as the digital implementation (see Table 3). Acceptable performance is obtained for A/D converters of 14 bits or greater resolution whereas, for the digital implementation, acceptable performance is obtained for A/D converters with resolution of 10 bits or greater.

The apparent reason for the poorer performance of this implementation compared to the digital implementation is that the implementation accuracy of the integrator outputs is greater for the latter than for hybrid implementation. Every sample of the integrated output and input is converted to an N-bit digital representation in the hybrid implementation. In the digital implementation, the integrated output and input are formed by numerically integrating the N-bit samples of the system input and output. The numerical integration is accomplished using the full capability of the GP computer machine accuracy. The samples are accumulated and not rounded to 16 bits as is the case for the hybrid implementation. Therefore, the digital implementation is actually more accurate than the hybrid implementation.

3. Four-Pole System Analysis and Results

Although the performance of the hybrid implementation was not as good as the digital implementation for the two-pole system, its performance for the four-pole system of paragraph III.B.1.c.(2) was investigated. The results of the investigation are presented in Table 22. The performance of the hybrid implementation is significantly better than the digital implementation for a 24-bit A/D converter and an ideal A/D converter. The performance of the hybrid implementation is slightly better than the digital implementation for a 20-bit A/D converter but its performance deteriorates significantly for a 16-bit A/D converter. With 16-bit resolution, the hybrid implementation identifies a pair of complex conjugate poles instead of poles at 0.51 and 0.82 MHz.

The results of Table 22 are useful in another respect. The performance of the hybrid implementation with an ideal A/D converter (machine accuracy) is significantly better than that of the digital implementation. This is highlighted in Table 23. These results indicate the effect of numerical integration on the performance of the pencil-of-functions approach. For systems with N > 2, the numerical integration using Simpson's rule appears to be a serious limitation to the performance of the technique.

TABLE 22. SIMULATION RESULTS FOR HYBRID IMPLEMENTATION FOR DIFFERENT LEVELS OF A/D CONVERTER RESOLUTION, FOUR-POLE SYSTEM, INTEGRATION TIME = 4.8 μ s, SAMPLING INTERVAL = 1.5 ns

Number of A/D Bits	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
No A/D Converter	0.011550994 0.5099998	-0.3×10^{-4} -0.34×10^{4}	2.8069668 x 10 ⁵ -1.200447 x 10 ⁷	0.0017 0.037	0.775 x 10 ⁻⁸
	0.8200003 6.49999	0.53×10^{-4} 0.8×10^{-5}	1.5111038 x 10 ⁷ -1.61031116 x 10 ⁸	0.073 0.0193	0,773 % 10
	0.011550716 0.5100335	0.00244 0.00657	2.8068844 x 10 ⁵ -1.200283 x 10 ⁷	-0.00123 0.0236	0.245 x 10 ⁻⁹
24	0.8199492 6.49999	-0.006189 -0.000321	1.510175 x 10 ⁷ -1.6099426 x 10 ⁸	0.0116 -0.0035	0.240 X 10
	0.0116280268 0.511678239	0.6668 0.329	2.82697507 x 10 ⁵ -1.3764095 x 10 ⁷	0.714 14.7	0.851 x 10 ⁻³
20	0.815207 6.509094	-0.584 0.140	1.900147 x 10 ⁷ -1.7141638 x 10 ⁸	25.8 6.47	0.631 % 10 5
16	0.38824 ±0.28327 0.0226615 7.617245	96. 17.2			

TABLE 23. COMPARISON OF HYBRID AND DIGITAL IMPLEMENTATION PERFORMANCE FOR FOUR-POLE SYSTEM, INTEGRATION TIME = 4.8 μs , SAMPLING INTERVAL = 1.5 ns

Implementation	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
Hybrid	0.011550994 0.5099998	-0.3×10^{-4} -0.34×10^{-4}	2.8069668 x 10 ⁵ -1.200447 x 10 ⁷	0.0017 0.037	0.775 x 10 ⁻⁸
.,,5114	0.8200003 6.499999	0.53 x 10 ⁻⁴ 0.8 x 10 ⁻⁵	1.5111038 x 10 ⁷ -1.61031116 x 10 ⁸	0.073 0.0193	0.775 x 10.0
Digital	0.011279618 0.4988702	-2.35 -2.18	2.789548 x 10 ⁵ -1.048074 x 10 ⁷	-0.619 -12.66	
Digital	0.8540037 6.453757	4.14 -0.711	1.3534398 x 10 ⁷ -1.594465 x 10 ⁸	-10.36 -0.964	0.103 x 10 ⁻⁴

4. Amplifier, Signal Generator, and Data Storage Requirements

The signal generator and amplifier requirements for the hybrid implementation are essentially the same as those detailed for the digital implementation. The amplifiers in the hybrid implementation will have different gains to match the integrator outputs to the appropriate A/D converter full-scale input voltage but the frequency characteristics required are the same as those required for the digital implementation.

The data storage requirements are more complicated for the hybrid implementation because there are 2N+1 data streams to be recorded and stored in memory. This implies that a larger number of memory chips is required; however, there is no inherent technology limitation in meeting the data storage requirements. The cost of the data storage system will be approximately (N+1)/2 times that required for the digital implementation.

5. Conclusions - Hybrid Implementation

The resolution requirements for the hybrid implementation are significantly greater than for the digital implementation. Since the hybrid implementation require A/D converters of approximately 24 bits, this implementation is beyond the current state of the art (16 bits). For systems with two poles or fewer, the hybrid implementation offers no advantages over the digital implementation. For systems with more than two poles, the hybrid implementation offers potential performance improvement over the digital approach for an A/D converter with 24 bits. This improvement, however, increases the measurement implementation complexity and cost.

It is not feasible to consider implementation of this approach for an experimental validation at this time because of the A/D converter requirement.

Future improvements in A/D converter technology may permit implementation of this approach at that time. Therefore, the approach cannot be dropped from total consideration at this time but should be relegated to a low priority position until the A/D converters become available.

D. ANALOG IMPLEMENTATION

The analog implementation for the identification technique is shown in Figure 35 for N = 2.

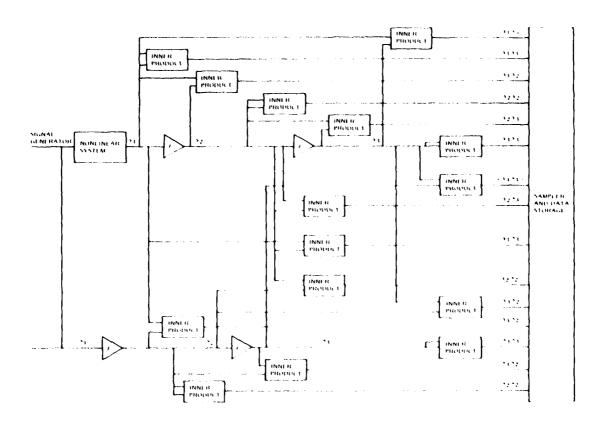


Figure 35. Analog Implementation

The block labeled "inner product" in Figure 35 performs the operation shown in Figure 36.

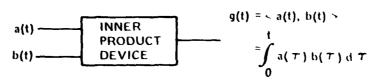


Figure 36. Inner Product Device Model

The analog implementation forms the inner products for the Gram matrix of the pencil—of-functions approach using analog devices. Analog integrators are used to obtain the integrated input and output functions, and inner product devices that multiply the two inputs and integrate the product are used to form the Gram matrix entries. The output of each inner product

device is sampled using A/D converters and stored for further processing on a general purpose computer.

1. Digital Simulation - Analog Implementation

The simulation of the identification technique was modified to represent the analog implementation. The numerical integration for the inner products was removed and replaced by the analytical functions for the inner products. The various integrated inputs, outputs, and inner products for N=2 are listed in the FORTRAN computer program listing in Appendix C.

2. A/D Converter Requirements

The A/D converter requirements for the analog implementation are considered in this paragraph. Only one sample of the output of each inner product device is necessary for pencil-of-functions processing. Therefore, the conversion time requirements for the A/D converters in this implementation are considerably different from those of the digital implementation. If the output of each inner product device is sampled and held at the end of the integration period, then the A/D converters can take as long as necessary to convert the input. This is significant because, as was observed in paragraph III.B.1.g, generally the higher the resolution of the A/D converter, the slower the conversion time. Also, because only a single sample per inner product device is required, it is feasible to think of using a single A/D converter to convert all inner product outputs via multiplexing circuitry.

The resolution requirements for the A/D converters are discussed in the following section.

a. Two-Pole System Analysis and Results

The performance of the analog implementation was evaluated for the two-pole system of paragraph III.B.1.c.(1). The assumed impulse response of the system is

h(t) =
$$2.8069192 \times 10^5 e^{-0.011550998} (2 \pi \times 10^6)t$$

- $2.7368441 \times 10^8 e^{-10.616986} (2 \pi \times 10^6)t$, $t > 0$ (90)

For the initial performance evaluation, the analog integrators and inner product devices were assumed perfect. The inner

product device outputs were sampled with A/D converters whose most significant bit magnitude was established on the basis of the peak value of each inner product device. The performance results for different levels of A/D converter resolution are presented in Table 24. These results indicate that 18-20 bit resolution is required for satisfactory performance. This is beyond the current state of the art in A/D converters and restricts the feasibility of this implementation in the present time frame. In general, the performance of the analog implementation is significantly less than that of the digital implementation. Once again, the reason for this appears to be the fact that the digital implementation forms the inner products by accumulating products of N-bit numbers using full machine accuracy. Consequently, the resolution of the inner product is greater than that obtained using the analog implementation which uses a N-bit representation of the final inner product value.

b. Integrator and Inner Product Device Requirements

The A/D converter requirements were determined in section a. above, assuming perfect integrator and inner product devices. This is impossible to achieve in a practical system. This paragraph evaluates accuracy requirements for the integrators and inner product devices.

Each entry of the Gram matrix will be in error prior to A/D conversion. These error will arise from the imperfections of the integrator and the inner product device, and these will be a function of the devices and the inputs to the devices. In order to evaluate the tolerable magnitude of these errors using the computer simulation, they were assumed to be uniformly distributed between ±K percent where K is an input to the simulation. Each inner product is evaluated using the exact expression in the simulation and is then multiplied by (1 + 100. X) where X is uniformly distributed between ±K percent and is selected independently for each inner product.

The performance results using this error model are provided in Table 25. These results assume a perfect A/D converter (machine acccuracy). The results of Table 25 indicate that an inner product total error of less than 10^{-3} percent must be maintained to achieve satisfactory performance.

The performance of the analog implementation was also evaluated taking into account the effects of the A/D converter resolution. These results are provided in Tables 26 through 29 for A/D converters of 24, 20, 18 and 16 bits, respectively. Figure 37 is a plot of normalized mean squared error as a function of inner product error. These results support the conclusion that the total inner product error must

TABLE 24. SIMULATION RESULTS FOR ANALOG IMPLEMENTATION FOR DIFFERENT LEVELS OF A/D CONVERTER RESOLUTION, INTEGRATION TIME = 9.6 us, ANALYTICAL INTEGRATION

No. of A/D Converters	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
No A/D	0.01155099799	-0.71 x 10-7	2.80691908 x 105	2.87 x 10-5	2 10 10
converter	10.616986036	0.34 x 10-6	-2.73684410828 x 108	3.03 x 10-5	01 X C\$6.0
č	0.01154828177	-0.023	2.8060527118 x 105	-0.0308	7-01
5 7	10.620821638	0.0361	-2.737528285 x 108	-0.025	. 01 x %cr.0
ć	0.01153782195	-0.114	2.80271658 x 10 ⁵	-0.149	9
77	10.63620273	0.181	-2.7403180907 x 10 ⁸	0.127	0.37 × 10.0
ć	0.01149365755	-0.496	2.788648036 x 10 ⁵	-0.651	3-00-0
0.7	10.70146787	962.0	-2.752142993 x 108	0.559	0.01.00
Ç	0.011319341	-2.0	2.73339299 x 105	-2.62	() () ()
ν T	10.970104	3.33	-2.801041896 x 108	2.34	0 01 × 717.0
Q.	0.010570331	-8.49	2.50092183 x 10 ⁵	-10.9	6-01
9	12.3080966	15.9	-3.045420229 x 108	11.27	- 01 v 17:0
3	0.00637772	-44.8	1.3419145 x 10 ⁵	-52.2	1000
*	12.766525	491.3	-1.27665 x 10 ⁹	366.5	- OT & 76.0
Ç	0.01957734	69.5	5.8572269 x 10 ⁵	108.7	
77	5.8839899	-44.6	-2.017712 x 108	-26.2	0.10003

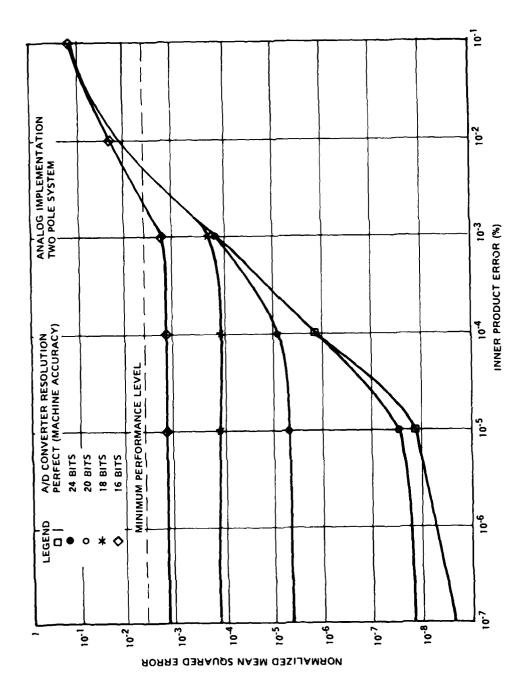
SIMULATION RESULTS FOR ANALOG IMPLEMENTATIO" FOR DIFFERENT LEVELS OF INNER PRODUCT ERROR, INTEGRATION TIME = 9.6 µs, PERFECT A/D CONVERTER TABLE 25.

Inner Product Error (%)	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
	0.01550998	-7.1 x 10-6	2.806919208 x 10 ⁵	2.8 x 10-5	0 may 10
>	10.61698603	3.4 x 10-5	-2.7368441 x 10 ⁸	3.03 x 10-5	0.545 x 15-10
<u> </u>	0.011548744	-0.0195	2.80620361 x 10 ⁵	-0.025	7-01
0	10.61438876	-0.0244	-2.73592359 x 10 ⁸	-0.033	0.154 × 10-
4.0	0.0115284433	-0.195	2.799762306 x 10 ⁵	0.25	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	10.59122218	-0.242	-2.72769677 x 108	-0.33	0-01 × cc1.0
10-3	0.0113241596	-1.96	2.73525408 x 10 ⁵	-2.55	, i
0	10.37901461	-2.24	-2.650797367 x 108	-3.14	0.147 × 10-5
	0.0091189174	-21.05	2.0748628 x 10 ⁵	-26.1	1000
	9.53705737	-10.2	-2.21483894 x 108	-19.1	- 01 x /811.0
-	0.015862279	37.3	4.34522529 x 10 ⁵	54.8	
	2.93256084	-72.4	-8.9260807 x 10 ⁷	-67.4	0.14

SIMULATION RESULTS FOR ANALOG IMPLEMENTATION FOR DIFFERENT LEVELS OF INNER PRODUCT ERROR, INTEGRATION TIME = 9.6 µs, 24 BIT A/D CONVERTER TABLE 26.

Inner Product Error (%)	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
	0.01154828117	-0.023	2.8060527 x 10 ⁵	-0.0308	7-04 - 43-0
o	10.620821638	0.0361	-2.73752828 x 108	-0.025	. 101 x 4c1.0
<u>.</u>	0.011545663	-0.046	2.8052219 x 105	-0.0605	7-00 = 004 O
0 01	10.617276	0.0027	-2.7363229 x 108	-0.019	0.462 x 10 ·
4-0.	0.011527022	-0.207	2.79930973 x 10 ⁵	-0.271	6
. 01	10.5927707	-0.228	-2.7279368 x 108	-0.325	01 x 601.0
	0.011321356	-1.99	2.734369 x 105	-2.58	600
0	10.3823478	-2.21	-2.651341 x 108	-3.12	0 01 % 041.0
2-0-	0.0091152623	-21.1	2.0738214 x 105	-26.1	
101	9.53948438	-10.1	-2.2150356 x 108	-19.2	- 01 4 011.0
1-0,	0.0158644	37.3	4.346 x 10 ⁵	54.8	
07	2.932356	-72.4	-8.9261 x 107	-67.4	751.0

SIMULATION RESULTS FOR ANALOG IMPLEMENTATION FOR DIFFERENT LEVELS OF INNER PRODUCT ERROR, INTEGRATION TIME * 9.6 µs, 20 BIT A/D CONVERTER TABLE 27.


Inner Product Error	Predicted System Poles	Percentage	Predicted	Percentage	Normalized Mean
(%)	(MHz)	Error	System Residues	Error	Squared Error
	0.01149365755	-0.496	2,78864803 x 105	-0.651	0 20 C
)	10.70146787	962.0	-2.752142993 x 10 ⁸	0.559	0 01 x 00/0
<i>(</i>)	0.0114933065	-0.499	2.78853978 x 10 ⁵	-0.655	
201	10.6961893	0.746	-2.7507474 x 108	0.508	2-01 × 229.0
4-0.	0.0114723125	-0.68	2.7818942 x 10 ⁵	-0.891	
	10.6732183	-0.53	-2.742489 x 108	0.206	0 01 × 26.0
10-3	0.0112657849	-2.47	2.716844 x 10 ⁵	-3.21	5-00
	10.457255	-1.5	-2.66433697 x 108	-2.65	0 01 X 571.0
, 0-2	0.090454018	-21.7	2.0539462 x 105	-26.8	
	9.59609748	-9.61	-2.22112449 x 108	-18.8	0.123 X 10 2
30-3	0.015904702	37.7	4.3616566 x 10 ⁵	55.4	071
	2.9293634	-72.4	-8.92965 x 107	-67.4	0,1,0

SIMULATION RESULTS FOR ANALOG IMPLEMENTATION FOR DIFFERENT LEVELS OF INNER PRODUCT ERROR, INTEGRATION TIME = $9.6~\mu\,s$, 18 BIT A/D CONVERTER TABLE 28.

Inner Product Error (%)	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
	0,011319341	-2.0	2,73339299 x 10 ⁵	-2.62	2 * * * *
>	10.970104	3.33	-2.801041896 x 108	2.34	0-01 × 711.0
ن ا ا	0.01131668337	-2.03	2.732557712 x 10 ⁵	-2.65	\$!
))	10.96722873	3.3	-2.800001816 x 108	2.31	2-01 x c/11.0
4-0	0.0112962512	-2.2	2.726142 x 10 ⁵	-2.88	7
2	10.94197826	3.06	-2.791203967 x 108	1.99	0.124 x 10.0
1013	0.0110874443	-4.01	2.660901177 x 10 ⁵	-5.2	5-0-0
2	10,70635159	0.84	-2.70765252 x 108	-1.06	0.338 × 10.5
10-2	0.0088176045	-23.6	1,9895995 x 10 ⁵	-29.1	100000000000000000000000000000000000000
	9.78349083	-78.5	-2.241044599 x 108	-18.1	- 01 v oct.0
1	0.0160334969	38.8	4.4117157 x 10 ⁵	57.2	0
- 01	2.9198487	-72.5	-8.9409112 x 107	-67.3	641.0

SIMULATION RESULTS FOR ANALOG IMPLEMENTATION FOR DIFFERENT LEVELS OF INNER PRODUCT ERROR, INTEGRATION TIME = 9.6 μs , 16 BIT A/D CONVERTER TABLE 29.

Inner Product Error (%)	Predicted System Poles (MHz)	Percentage Error	Predicted System Residues	Percentage Error	Normalized Mean Squared Error
	0.0105703313	-8.5	2.50092183 x 10 ⁵	-10.9	6-33
0	12.3080966	15.9	-3.0454202296 x 108	11.3	2-01 x 17.
ر ا ا	0.0105680356	-8.51	2.500225174 x 10 ⁵	-10.9	0 - 0
S-01	12.30347489	15.88	-3.04398080 x 108	11.2	0.217 x 10-2
	0.0105473737	-8.7	2,493957096 x 10 ⁵	-11.1	
10.	12.2647352	15.5	-3.031741244 x 108	10.77	7-01 x 817.0
ر ا	0.01032065567	-10.65	2.42553116 x 10 ⁵	-13.6	
6-01	11.9306556	12.37	-2.920803 x 108	6.72	7-01 x 657.0
610.	0.00782470937	-32.26	1.71728479 x 10 ⁵	-38.8	
10.	10.657726	0.384	-2.330022438 x 108	-14.8	0.228 x 10-1
	0.0165459431	43.2	4.6135407 x 10 ⁵	64.4	9
1-01	2.88236707	-72.8	-8.98437394 x 108	-67.2	901.0

Identification Technique Performance as a Function of Inner Product Error-Analog Implementation Figure 37.

be less than 10^{-3} percent to achieve satisfactory performance for A/D converters of 18 bits or greater resolution. The analog implementation does not achieve satisfactory performance with less than an 18 bit A/D converter.

The problem now is to assess the sources of error in the analog implementation and determine the requirements for each device to meet the total system error requirement. The sources of error in the analog implementation are: (1) the integrator and (2) the inner product device.

The integrator affects the total error in two ways. First, the inputs to some of the inner product devices are the outputs of integrators. Second, the inner product device integrates the product of the two functions input to it. The error introduced by the integrator is examined below.

(1) Integrator Error

$$H_{TI}(s) = \frac{1}{s} \tag{91}$$

A practical integrator has a transfer function of the form

$$H_{\text{PI}}(s) = \frac{1}{s + \gamma} \tag{92}$$

A practical way of implementing an integrator is to use an operational amplifier as shown in Figure 38.

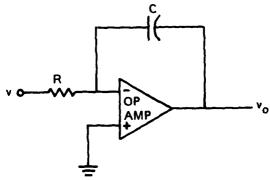


Figure 38. Practical Integrator

The transfer function of this implementation is given by (Reference 8)

$$H_0(s) = A_{v_0} \frac{(2\pi f_1)}{RC} \left| \frac{1}{s + (1/RCA_{v_0}) | s + A_{v_0}(2\pi f_1) |} \right|$$
(93)

where

 \mathbf{f}_1 is the high frequency pole of the operational amplifier

 $\mathbf{A}_{\mathbf{V_0}}$ is the low frequency gain of the operational amplifier

Typically, f_1 is very high (50 to 100 MHz) and A_{v_0} is 10^4 to 10^8 . Therefore the pole at $S=-2\pi f_1 A_{v_0}$ is on the order of 5 x 10^{11} Hz. This means that, for systems in the range of 10 to 50 MHz, this pole can effectively be ignored. Then

$$H_0(s) = H_{pI}(s) = \frac{K}{s + \frac{1}{RC A_{v_0}}}$$
 (94)

where

$$\gamma = \frac{1}{RC A_{v_0}}$$

and

$$K = \frac{2\pi f_1 A_{v_0}}{RC}$$

Now we examine the difference in performance between an ideal and practical integrator. The output of an ideal integrator is given by

$$y_0(t) = \int_0^t x(\tau) d\tau = x(t) * u(t)$$
 (95)

where x(t) is the input function and u(t) is the unit step function. The output of the ideal integrator is the convolution

of the input and a unit step function. Similarly, the double integral of x(t) is given by

t
$$\beta$$

$$\int_{0}^{\pi} \int_{0}^{\pi} x(\beta) d\tau d\beta = x(t) * (t u(t))$$
(96)

or the input convolved with a ramp function.

The outputs of a practical integrator are listed below

Single Integration
$$x(t) * e^{-iT}u(t)$$

Double Integration $x(t) * te^{-\gamma T}u(t)$

For a single integration, the error in the integration is a function of the value of $e^{-\gamma T}$, where T is the integration period. This is a measure of the "droop" of the integrator over the integration period. This concept of "droop" also extends to the double integration. The key to reducing the error of a practical integrator is to maintain the product γT as close to zero as possible. For $\gamma T = 1$. x 10^{-13} , the maximum difference between the true integrator impulse response and that of a practical integrator is given in Table 30 for $T = 9.6~\mu s$.

TABLE 30. PRACTICAL INTEGRATOR ERROR

Integration	Maximum Error Magnitude
Single	0.6×10^{-11}
Double	0.58×10^{-10}

For the two-pole system of interest, the integrator output levels are of the magnitudes listed in Table 31.

TABLE 31. INTEGRATED OUTPUT PEAK VALUES - TWO-POLE SYSTEM

Integrator Output	Peak Value
Single	0.13×10^{-2}
Double	0.4×10^{-2}

The errors introduced in the integrator outputs are almost negligible, and are on the order of 10^{-15} for a single integration and 2 x 10^{-13} for a double integration. The magnitude of these errors will be compared with those of the inner product device to determine which device is the primary contributor to the total system error.

For $\gamma T = 1 \times 10^{-13}$, it is necessary that

$$\gamma = \frac{1 \times 10^{-13}}{9.6 \times 10^{-6}} = 1.04 \times 10^{-8}$$

where

$$\gamma = \frac{1}{RC A_{v_0}}$$
 (97)

For a typical operational amplifier in use today, $\rm A_{v_0}$ varies from $\rm 10^4$ to $\rm 10^{10}$. This requires that RC be in the range of 9.6 x $\rm 10^{-3}$ to 9.6 x $\rm 10^{3}$. A typical RC selection is R = 1 megohm and C = 1 $\rm \mu f$ or RC = 1. Achieving RC = 9600 requires larger capacitors and larger resistors than are desired. Therefore, an operational amplifier with an $\rm A_{v_0}$ of $\rm 10^{8}$ to $\rm 10^{10}$ or higher is recommended for use with RC chosen accordingly.

(2) Inner Product Device

The remaining critical component in the analog implementation is the inner product device. One approach to implementing the inner product device is shown in Figure 39.

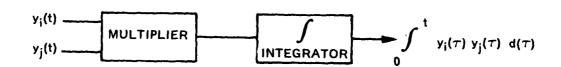


Figure 39. Inner Produce Device

As detailed above, the integrator should not contribute significantly to the error in the inner product. This means that the critical item in the inner product device is the analog multiplier.

The analog multiplier operates conceptually as shown in Figure 40.

Figure 40. Analog Multiplier Model

 V_{O} is a dimensional constant of a practical multiplier and is typically equal to 10 volts. There are several sources of error in a typical multiplier, some of which can be reduced or eventually eliminated by using external trimming techniques. A detailed discussion of these reducible errors is not provided in this report. However, the irreducible error in an analog multiplier is generally limited by the nonlinearity of the analog multiplier. The nonlinearity specification represents the peak difference between the multiplier output and the theoretical output. The typical range of nonlinearity errors for analog multipliers is in the range of 0.05 to 2 percent. These are specified in terms of full-scale output, i.e., a multiplier with a 0.1 percent nonlinearity error and a 10 volt full-scale maximum output has a maximum nonlinear error of 0.1 volt. The nonlinearity for each input is usually given in multiplier specifications and the nonlinearity error can be conservatively predicted from (Reference 9):

$$f_{-}(\mathbf{x}, \mathbf{y}) = |V_{\mathbf{x}}| v_{\mathbf{x}} + |V_{\mathbf{y}}| v_{\mathbf{y}}$$
(98)

where

f(x,y) is the nonlinearity error

 $\epsilon_{\mathbf{X}}$ is the fractional nonlinearity coefficient for \mathbf{x} input

 $\mathbf{r}_{\mathbf{y}}$ is the fractional nonlinearity coefficient for \mathbf{y} input

 V_x is the x input voltage

 $V_{\mathbf{v}}$ is the y input voltage

If V_x and V_y are assumed to have a maximum value of 0.1 volt, the expected product would have a maximum output of 0.1(0.1)/10 = 0.001 volt.

If the nonlinearity error is to be maintained at less than 0.001 percent, then it is necessary that

$$i(x,y) \le 0.00001 (V_x V_y) = 0.001 (\varepsilon_x + \varepsilon_y) \le 10^{-8}$$
 (99)

or

$$(\varepsilon_{\mathbf{x}} + \varepsilon_{\mathbf{y}}) \le 10^{-5} \tag{100}$$

For $\varepsilon_{x} = \varepsilon_{y}$,

$$\varepsilon_{\rm x} \le 0.5 \times 10^{-3}\%.$$
 (101)

A survey of commercially available multiplier devices indicates that the best multiplier accuracy that can be achieved is on the order of 0.05 percent. This device does not have sufficient accuracy to meet the requirements above. If the inputs to the multiplier are amplified to a peak of 10 volts, the product maximum will be 10 volts. The nonlinearity error is to be maintained to

$$f(x,y) \le 10^{-5} (10) = 10^{-4}$$
 (102)

This requires that

$$(\varepsilon_{x} + \varepsilon_{y}) \le \frac{10^{-4}}{10} = 10^{-5}$$
 (103)

so that no advantage is gained by amplifying the signals.

These results imply that the analog implementation is not feasible in the present time frame because of the inaccuracy of the analog multiplier. Multiplier specifications are for the maximum nonlinearity error of the output voltage. They are obtained by setting one input to a constant dc voltage. The other input is varied over the maximum input range and the output voltage measured and compared with the theoretical output. The maximum deviation is then recorded as the nonlinearity error. This complicates the error analysis undertaken in this section because the nonlinearity error specification is a worst case value. In reality, the range of voltages over which the system under test will operate may lie

in a region where the multiplier nonlinearity is much less than the worst case value. This cannot be determined from a multiplier specification sheet; indeed, it is a function of the actual devices to be used in the implementation. A significant amount of device testing would be required before the analog implementation could be considered feasible. The present indications, however, are that the multiplier errors are on the order of 0.05 percent as a minimum. This does not meet the accuracy requirements defined earlier for the inner product.

Another potential drawback for the analog multiplier is the bandwidth limitation. The analog multiplier with the 0.05 percent nonlinearity error is the Analog Devices Model #435K, which has a 3-dB bandwidth of 250 kHz. Wider bandwidth multipliers (1 to 10 MHz) are available at the price of increased nonlinearity error (minimum 0.1 to 0.5 percent).

On the basis of the extrapolation of the amplifier results of III.c, the upper 3-dB break frequency of the multiplier should be 1000 times the upper break frequency of the system under test. This implies that the system under test will be limited to 250 Hz for the 0.05 percent amplifier described above and to 1 to 10 kHz for the less accurate multipliers.

The analog implementation will also require careful consideration of the propagation time delays incurred in the circuitry. The inputs to the various inner product devices will, in many instances, have been processed by a different number of integrators. Any appreciable propagation delay will result in an error being introduced in the product of the two functions input to the analog multiplier. The results of this section clearly indicate that the error in the inner product calculation must be very small in order to obtain satisfactory performance from the identification technique. Therefore, the time delays must be compensated for as much as possible to reduce the overall inner product error. This may require a significant amount of testing prior to using the identification technique to appropriately synchronize the inputs to each inner product device.

A survey of available analog components did not reveal any analog correlator devices capable of forming the required inner product. This implies that the preferred implementation of the inner product device is the analog multiplier-integrator configuration of Figure 39.

These results support the conclusion that the analog implementation is not a feasible implementation for the identification technique at this time. Technology advancements in analog multiplier devices in the areas of increased accuracy

and bandwidth are necessary before the identification technique can be implemented using analog devices.

 Amplifier, Signal Generator and Data Storage Requirements

The analog implementation requires 2N+1 amplifiers to adjust the output of the inner product devices to the full-scale input voltage of the A/D converters. The performance requirements for the amplifier are similar to those determined for the digital implementation. The gain of each amplifier must be set dependent on the inner product peak amplitude of the inner product device output and the A/D converter input characteristics.

The signal generator requirements are the same as those determined for the digital implementation.

The data storage requirements are significantly reduced for the analog implementation. The stored data consists of 4N + 1 numerical values representing the inner product device outputs. This will permit use of smaller and fewer memory chips than are required for the digital implementation. This data storage requirement does not limit the feasiblity or applicability of the identification technique as was discussed in detail in paragraph III.B.4.

4. Conclusions - Analog Implementation

The critical components in the analog implementation are the inner product device and the A/D converter. The analysis of the analog implementation has led to the following conclusions.

- (1) A minimum of 18 bits of A/D converter resolution is required to achieve minimum identification performance.
- (2) The maximum tolerable error in the inner product output is on the order of 10^{-3} percent to achieve a minimum level of identification performance for A/D converters with 18 or more bits of resolution.
- (3) Performance improvement requires less inner product error $(10^{-4} \text{ to } 10^{-5} \text{ percent})$ and increased A/D converter resolution (20 to 24 bits). However, the performance of the analog implementation is below that demonstrated for the digital implementation.

- (4) Currently available analog multipliers have an output error on the order of 0.05 percent which is approximately 50 times greater than the maximum tolerable error of 0.001 percent required for minimum performance of the identification technique.
- (5) The analog multiplier and the A/D converter requirements for the analog implementation imply that it is not feasible to consider this implementation for an experimental test setup in the present time frame. Significant technological developments for analog multipliers and A/D converters are necessary before this implementation can prove feasible.

SECTION IV

REFERENCES

- 1. E. Ewen, "Black Box Identification of Nonlinear Volterra Systems," PhD Dissertation, Syracuse University, Dec. 1975. Also published as TIS R77EML7, General Electric Company, Aerospace Electronic Systems Department, Mar. 1977.
- J. Bussgang, L. Ehrman, and J. Graham, "Analysis of Nonlinear Systems with Multiple Inputs," <u>Proc. IEEE</u>, 62, pp 1088-1119, Aug. 1974.
- 3. D. George, "Continuous Nonlinear Systems," M.I.T. Research Laboratory of Electronics, Technical Report 355, 24 July 1959.
- V. Jain, "Filter Analysis by Use of Pencil of Functions, Part I," <u>IEEE Trans. Circuits and Systems</u>, <u>CAS-21</u>, pp 574-579, Sept. 1974.
- 5. E. Kreyszig, Advanced Engineering Mathematics, New York: J. Wiley & Sons, Inc., 1972.
- 6. V. Jain and J. Osman, "Computer Routines For Use in Second-Order Volterra Identification of EMI," University of South Florida, October 1978.
- 7. D. Sheingold, et. al., Analog-Digital Conversion Handbook, Analog Devices, Inc. 1976.
- 8. J. Millman and C. Halkias, <u>Integrated Electronics:</u>
 Analog and Digital Circuits and Systems, New York:
 McGraw-Hill Book Co., 1972.
- 9. D. Sheingold, et. al., Nonlinear Circuits Handbook, Analog Devices, Inc. 1976.

APPENDIX A

COMPUTER PROGRAM LISTING FOR THE DIGITAL IMPLEMENTATION OF THE IDENTIFICATION TECHNIQUE

A listing of the computer program for the digital implementation is provided below for the two-pole system of Section III.B.

```
100
          DIMENSION Y1(1,2401)
        DIMENSION A1(4), CP(4), C1(4), AP(4)
110
120
        DIMENSION G(10,10), Y(3,2401), U(3,2401), A(20,10), C(25,25)
130
        DIMENSION ISN(10), XLX(10), COEF(10), XLAMR(10), XLAMC(10)
        DIMENSION RR(10), CR(10), B(25), CRR(10,10), CI(10,10)
140
150
        DIMENSION LIMITI(10), LABEL(25), S(25,1), R(25,1)
160
         INTEGER SN.STEP1.STEP2
170C
          INITALIZATION AND INPUT PARAMETERS
180
        PI2=2.*3.14159
190
        ERMS=0.
        W3 = 10.
200
210
        A1(3) = -1.E6 * W3
220
         AP(3)=A1(3)
230
        DELT=4.E-3
240
        SN=2
250
        PRINT: "ORDER OF LINEAR SYSTEM IS", SN
260
        PRINT : ""
270
        SN2=2*SN
280
        SK=1.
290
        M = 2400
300
        MORIG=M
310
        LIMITI(1)=M+1
320
        STEP=SN+1
330
        T=DELT*M
340
         LL=0
350
         XMSBI=1.E-3
360
         XMSB0=1.59-3
370
         NBITS=0
380
         PRINT: "NUMBER OF BITS IN A/D=".NBITS
390
         PRINT: ""
400
         PRINT: "NUMBER OF WAVEFORM SAMPLES=", M
         PRINT:""
410
420
         PRINT: "INTEGRATION TIME IN MICROSECONDS=".T
         PRINT:""
430
440
         PRINT: "INTEGRATION INTERVAL IN MICROSECONDS=", DELT
450
         PRINT : ""
400
         R3=1.E-3
470
         CP(3)=R3
480 900 FORMAT(13X,E14.5)
490C
           EVALUATE INPUT AND OUTPUT FUNCTIONS
         R1=2.8069192E5
500
510
         R2 = -2.7368441E8
520
         W1=PI2*.011550998
530
         A1(1)=-1.E6*W1
540
         W2=PI2*10.616986
550
         A1(2) = -1.E6 * W2
560
         CA=R1*R3/((W3-W1)*1.E6)
570
         C2=R2*R3/((W3-W2)*1.E6)
```

```
580
         C3=R2*R3/((W2-W3)*1.E6)
590
        C3=C3+R1*R3/((W1-W3)*1.E6)
600
         CI(1) = -CA
610
         C1(2) = -C2
620
         CI(3) = -C3
         DO 909 JK=1, M+1
630
640
         XJK=JK
650
         U(1,JK)=0.
660
         XT3A=-W3*(XJK-1)*DELT
670
         IF(XT3A.LT.-80.) GO TO 166
680
         U(1,JK)=EXP(-M3*(XJK-1)*DELT)
690 166 CONTINUE
700
         U(1,JK)=1.E-3*SK*II(1,JK)
710
         CALL ATOD(U(1, JK), XMSBI, NBITS)
720
         XT1 = CA \times EXP(-W1 \times (XJK-1) \times DELT)
730
         XT2≈0.
740
         XT3=0.
750
         XT2A = -W2 * (XJK - 1) * DELT
760
         XT3A=-W3*(XJK-1)*DELT
770
         IF(XT3A.GT.-80.) XT3=C3*EXP(XT3A)
780
         IF(XT2\Lambda-GT.-80.) XT2=C2*EXP(XT2A)
790
         Y(1,JK)=XT1+XT2+XT3
800
         Y(1,JK)=SK*Y(1,JK)
018
         Y((1,JK)=Y(1,JK)
820
         CALL ATOD(Y(1, JK), XMSBO, NBITS)
830 999 CONTINUE
840
         PRINT: "ACTUAUL SYSTEM POLES ARE: ", WI/PI2, W2/PI2
850
         PRINT: ""
360
         PRINT: "ACTUAL SYSTEM RESIDUES ARE: ".RI.R2
870
         PRINT: ""
088
         M2=M
890
         PRINT: "INPUT MSB=".XMSBI
900
         PRINT: ""
910
         PRINT: "OUTPUT MSB=", XMSBO
920
         PRINT:"
930
         DO 138 JJ=2,SN+1
940C
         INTEGRATE INPUT FUNCTION SN TIMES USING SIMPSONS RULE
950
         II.=0
960
         U(JJ.1)=0.
970
         DO 137 \text{ II}=3.\text{M2}+1.2
980
         LL=LL+1
990
         KK=II-LL
1000
          TEI)1=U(JJ-1,II-2)+4.*U(JJ-1,II-1)+U(JJ-1,II)
1010
          U(JJ,KK)=U(JJ,KK-1)+T/(3*M2)*TED1
1020 137 CONTINUE
1030
          M2=M2/2
1040 138 CONTINUE
1050C
          INTEGRATE OUTPUT WAVEFORM SN TIMES USING SIMPSONS RULE
1060
          DO 101 JK=2.STEP
```

```
1070 120 LIMIT=M-1
1080
         JAT=0
1090
         I.IMITI(JK) = M/2 + I
11.00
         CONST=T/(3.*M)
1110 140 J=0
1120
         Y(JK,1)=0.
1130
         LIM=LIMIT+2
1140
         DO 13 I=3,LIM,2
1150
         J=J+1
1160
         KK = I - J
1170
         TERM52=Y(JK-1,I-2)+4.*Y(JK-1,I-1)+Y(JK-1,I)
1180
         Y(JK,KK)=Y(JK,KK-1)+CONST*TERM52
1190 13
         CONTINUE
1200
         M=M/2
1210 38
         CONTINUE
1220 101 CONTINUE
          EVALUATE INNER PRODUCTS FOR GRAM DETERMINANT
1230C
1240
         M=MORIG
         STEPI=SN+1
1250
1250
         STEP=2*SN+1
1270
         DO 100 K=1.STEP1
         LJ=1
1280
1290
         M = M
1300
         MSLJ=1
1310 220 LIMIT=M-2
1320
         JAT=0
1330
         CONST=T/(3.*M)
1340 240 CONTINUE
1350C
          EVALUATE G(K,K) FOR K=1.SN
1360
         DO 7 I=1,LIMITI(K)-2,2
1370
         XI = I
1380
         TERM1=2**FLOAT(K-1)*CONST
         TERM12=Y(K,I)**2+4.*Y(K,I+1)**2+Y(K,I+2)**2
1390
1400
         TERMI3=TERMI*TERMI2
1410
         G(K,K)=G(K,K)+TERM13
1420
         CONTINUE
1430C
         EVALUATE G(K,KM) FOR J .GT. K TO J=SN+1
1440
         DO 3 J=2.STEP1
1450
         MSLJ=1
1460
          IF(K-J) 435,437,436
1470 435 DO 6 I=1,LIMIT1(J)-2,2
1480
         XTER2=2**FLOAT(J-1)*CONST
1490
         TERM22=Y(K,MSLJ)*U(J,I)
1500
         HSLJ=MSLJ+2**FLOAT(J-K)
1510
         TERM23=4.*Y(K, HSLJ)*U(J, I+1)
1520
          KSLJ=MSLJ+2**FL()AT(J-K+1)
         TERM24=Y(K,KSLJ)*U(J,I+2)
1530
1540
         TERM2=XTER2*(TERM22+TERM23+TERM24)
1550
         KM=J+SN
         G(K,KM)=G(K,KM)+TERM2
1560
         MSLJ=KSLJ
1570
```

```
1580
         CONTINUE
1590
         GO TO 3
1600C
         EVALUATE G(K.KM) FOR K .GT. J TO K=SN+1
1610 436 DO 176 I=1,LIMIT1(K)-2,2
1620
         XTER2=2**FLOAT(K-1)*CONST
1630
         TERM22=Y(K,I)*U(J,MSLJ)
1640
         HSLJ=MSLJ+2**FL()AT(K-J)
1650
         TERM23=4.*Y(K,I+1)*U(J,HSLJ)
1650
         KSLJ=MSLJ+2**FL()AT(K-J+1)
1670
         TERM24=Y(K,I+2)*U(J,KSLJ)
1680
         TERM2=XTER2*(TERM22+TERM23+TERM24)
1690
         KM=J+SN
1700
         G(K,KM)=G(K,KM)+TERM2
1710
         MSLJ=KSLJ
1720 176 CONTINUE
1730
         GO TO 3
         EVALUATE G(K,KM) FOR K=J
1740C
1750 437 DO 276 I=1,LIMIT1(K)-2,2
         TERM22=Y(K,I)*U(J,I)
1760
         TERM23=4.*Y(K,I+1)*U(J,I+1)
1770
1780
         TERM24=Y(K,I+2)*U(J,I+2)
1790
         XTER2=2**FLOAT(K-1)*CONST
1800
         TERM2=XTER2*(TERM22+TERM23+TERM24)
1810
         KM=J+SN
1820
         G(K,KM)=G(K,KM)+TERM2
1830 276 CONTINUE
1840
      3 CONTINUE
         IF(K-STEP1) 236,100,100
1850
1860 100 CONTINUE
1370C
         EVALUATE G(K,K) FOR K=SN+1 TO 2*SN+1
         DO 8 K=SN+2.SN2+1
1880
1890
         DO 9 I=1,LIMIT1(K-SN)-2,2
1900
         DER1=2**FLOAT(K-SN-1)*T/(3*M)
1910
         DER2=U(K-SN,I)**2+4.*U(K-SN,I+1)**2+U(K-SN,I+2)**2
1920
         DER3=DER1*DER2
1930
         G(K,K)=G(K,K)+DER3
1940
         CONTINUE
1950
      8
         CONTINUE
1960
         GO TO 425
1970 236 IF(K-SN) 237,237,100
1980C
         EVALUATE G(K,LK) FOR K .LT. SN, LK=K+1,SN+1
1990 237 DO 401 LK=K+1, SN+1
2000
         MMW=LIMITI(LK)-2
2010
         I_{i}J=1
         DO 402 LI=1, MMW, 2
2020
2030
         TERM31=Y(K,LJ)*Y(LK,LI)
2040
         KH1=LJ+2**FL()\Lambda T(LK-K)
2050
         TERM32=Y(K,KH1)*Y(LK,LI+1)
2060
         KH2=LJ+2**FLOAT(LK-K+1)
2070
         TERM33=Y(K,KH2)*Y(LK,LI+2)
2080
         TERM34=TERM1*2**FLOAT(LK-K)
```

```
2090
         LJ=LJ+2**FL()AT(LK-K+1)
         TERM3=TERM34*(TERM31+4.*TERM32+TERM33)
2100
2110
         G(K,LK)=G(K,LK)+TERM3
2120 402 CONTINUE
2130 401 CONTINUE
2140 238 IF(K-1) 57,57,58
2150C
         EVALUATE G(K+SN, LK+SN) FOR K=2, SN+1, LK=3, SN+1
2160
      58 DO 601 LK=K+1,SN+1
2170
         MMW=LIMITI(LK)-2
2180
         LJ=1
2190
         DO 602 LI=1, MMW, 2
2200
         TEX1=U(K_*LJ)*U(LK_*LI)
2210
         KL1=LJ+2**FL()AT(LK-K)
2220
         TEX2=U(K,KL1)*U(LK,LI+1)
2230
         KL2=LJ+2**FLOAT(LK-K+1)
2240
         TEX3=U(K,KL2)*U(LK,LI+2)
2250
         TEX4=TERM1*2**FLOAT(LK-K)
2260
         LJ=LJ+2**FL()AT(LK-K+1)
2270
         TEX5=TEX4* (TEX1+4.*TEX2+TEX3)
2280
         G(K+SN,LK+SN)=G(K+SN,LK+SN)+TEX5
2290 602 CONTINUE
2300 601 CONTINUE
2310
      57 CONTINUE
2320
         GO TO 100
2330 425 CONTINUE
      PRINT: "UNSCALED ENTRIES IN GRAM DETERMINANT ARE"
2340
                                                         INNER PRODUCT"
2350
           PRINT:"
                                 ROW
                                              COLUMN
2360
           PRINT:"
                                  I
                                                 J
                                                            G(I,J)#
           PRINT: ""
2370
2380
           STEPI=STEPI+SN
2390
           DO 942 JIK=1,STEP1
2400
           DO 943 KLI=1,STEP1
2410
           G(KLI,JIK)=G(JIK,KLI)
2420
           PRINT: JIK, KLI, G(JIK, KLI)
2430 943 CONTINUE
2440 942 CONTINUE
2450
          MORIG=M
2460
          N=SN2
          SCALE SCALAR PRODUCTS BY 1.E6 FOR COMPUTATION FACILITY
2470C
2480
          DO 1011 I=1.SN2+1
2490
          DO 1021 J=1.5N2+1
2500
          G(I,J)=1.E6*G(I,J)
2510 1021 CONTINUE
2520 1011 CONTINUE
          EVALUATE DIAGONAL COFACTORS COEF(I)
2530C
          PRINT: "DIAGONAL COFACTORS ARE AS FOLLOWS"
2540
2550
          DO 300 J=1.5N2
2560
          DO 310 I=1.SN2
2570
          A(J,I)=G(J+1,I+1)
2530
          A(I,J)=A(J,I)
2590 310 CONTINUE
```

```
2600 300 CONTINUE
2610
         II)=1
2620
         COEF(1) = DETE(A, N, 20)
2630
         PRINT: ID, COEF(1)
2640
         DO 500 LKJ=1.SN
2650
         DO 400 J=1,LKJ
         DO 410 I=1,LKJ
2660
2670
         A(J,I)=G(J,I)
2680
         A(I,J)=G(I,J)
2690 410 CONTINUE
2700 400 CONTINUE
2710
         DO 510 J=1,LKJ
2720
         DO 520 I=LKJ+1,SN2
2730
         A(J,I)=G(J,I+1)
2740
         A(I,J)=A(J,I)
2750 520 CONTINUE
2760 510 CONTINUE
2770
         DO 600 J=1.KJ+1.SN2
2780
         DO 610 I=LKJ+1.SN2
2790
         A(J,I)=G(J+1,I+1)
2800
         A(I,J)=A(J,I)
2810 610 CONTINUE
2820 600 CONTINUE
         COEF(LKJ+1)=DETE(A,N,20)
2830
2840
         PRINT:LKJ+1,COEF(LKJ+1)
2850
         LNM=LKJ+I
2860 500 CONTINUE
2870
         PRINT: "EIGENVALUE EQUATION COEFFICIENTS ARE"
2880C
         EVALUATE EIGENVALUE EQUATION COEFFICIENTS B(I)
2890
         DO 640 I=1.SN+1
2900
         B(I)=SORT(ABS(COEF(SN+2-I)))
2910
         PRINT:1,3(I)
2920 640 CONTINUE
2930C
         EVALUATE SYSTEM POLES
2940
         N=SN
2957
         PRINT: "POLES OF SYSTEM ARE GIVEN BELOW"
2960
         PRINT:"
                             NUMBER
                                       REAL (MHZ)
                                                     IMAG(MHZ)"
2970
         CALL DOWNH(B, N, RR, CR)
2980
         DO 650 J=1.SN
2990
         XLAMR(J)=RR(J)/PI2
3000
         XI.AMC(J)=CR(J)/PI2
3010
         AP(J)=RR(J)*1.E6
3020
         PRINT: J. XLAMR(J), XLAMC(J)
         XLAMR(J) = RR(J)
3030
3040 650 CONTINUE
3050C
         EVALUATE SYSTEM RESIDUES
3060
         FLAG=1
3070
         DO 660 K=1,SN+1
3080
          IF(XLAMC(J)) 670,660,670
3090 670 FLAG=0
3100 660 CONTINUE
```

```
3110
         IF(FLAG) 680,680,690
3120 590 DO 700 I=1,5N
3130
         DO 710 J=1.SN
3140
         TEMP1=1
         DO 711 L=1.I
3150
         TEMPI=TEMPI*XLAMR(J)
3160
3170 711 CONTINUE
3180
         EWEL=O.
3190
         EMES=0.
3200
         EWE=1./(TEMP1*(XLAMR(J)+W3))
3210
         ENETA=XLAMR(J)*T
3220
         EWE2A=-W3*T
3230
         IF(EWE2A.GT.-80.) EWE2=EXP(EWE2A)
3240
         IF(EWEIA.GT.-80.) EWEI=EXP(EWEIA)
3250
         C(I,J) = ENE * (EWE1 - EWE2)
3260
         C(I,J)=1.E-3*SK*C(I,J)
3270
         TEMP=O.
         DO 720 K=1, I
3280
3290
         TEMP2=1.
3300
         DO 721 KK=1, I+1-K
3310
         TEMP2=TEMP2*XLAMR(J)
3320 721 CONTINUE
3330
         TEMP=TEMP+U(K+1,LIMIT1(K+1))/TEMP2
3340 720 CONTINUE
3350
         C(I,J)=C(I,J)-TEMP
3360 710 CONTINUE
3370 700 CONTINUE
3380
         CALL MTINV(C, N, N, 25, LABEL)
3390
         1007401=2.5N+1
3400
         S(I-1,1)=Y(I,LIMITI(I))
3410 740 CONTINUE
         CALL MTMPY(O,C,S,R,SN,SN,I)
3420
3430
         PRINT: "RESIDUES OF SYSTEM POLES ARE GIVEN BELOW"
         DO 751 I=1.SN
3440
3450
         PRINT:1,R(1,1)*1.E6
3460 751 CONTINUE
3470
         GO TO 1000
3480 680 CONTINUE
3490 1000 CONTINUE
3491
         XI=100.*(R(1,1)*1.E6-R1)/R1
         X2=100.*(R(2,1)*1.E6-R2)/R2
3492
3493
         PRINT:"
3494
         PRINT: "PERCENTAGE ERROR-RESIDUES".X1.X2
3495
         PRINT: ""
3496
         X1=100.*(AP(1)-A1(1))/A1(1)
3497
         X2=100.*(AP(2)-A1(2))/A1(2)
3498
         PRINT: "PERCENTAGE ERROR-POLES". X1. X2
3499
         PRINT: ""
         PRINT:""
3500
3510 PRINT:"
                                                     DI FFERENCE"
                                   PREDICTED
                         ACTUAL
                   JK
3520
         SUM=0.
```

```
353)
         CP(1) =R(1,1) *R3Z(-#3-RR(1))
         CP(2)=R(2,1)*R3/(-93-RR(2))
3540
3550
         CP(3)=R(2,1)*R3/(RR(2)*R3)*R(1,1)*R3/(RR(1)*W3)
         DO 247 JK=1.MORTG+1
3550
3570
         X : IX = JX
3530
         XTTF=CP(1)*FXP(3R(1)*(XJK~F)*DETT)
         X1.22-0.
3500
3500
         XI Ban.
         XTPPA FRR CODX (XUK=10XDELT
3510
3520
         T : THG \times (T - AT, Y) \times W = \pi AT + TT
3530
         II (XTBA.GT.-80.) XTBB=CP(B)*EXP(XTBBA)
3040
         TECXTONA.GT.-80.) XTOD-OPCON*EXPCXTONA)
         YOUT=-1.*(XT11+XT??+XT33)*SK
3050
3000
         DELOUISY MUT-YICL, JK)
3670
         1.4X=1.7K+1
3630
         TECLUK.GE. (00) GO TO 248
3690
         GO 10 249
3700 248 IJK=0
3710
         PRINT*JK,YICI,JK),YOUT,DELOUT
3720 249 CONTINUE
3730-247 CONTINUE
3730
         SUMIT-O.
3740
         Talkl.bea
3750
         DO 242 IX=1.5N+1
         DO 242 JX=1,SN+1
3750
3770
         IF ((AP(IX) + AP(IX)) *T.II. = 90.) GO TO 243
3730
         SUM=SUM+CP(IX)+CP(JX)/(AP(IX)+AP(JX))+(FYP((AP(IX)+AP(JX))+T))
3790 243 IECCAPCIX)+A1CJX))*T.LT.-90.) GO TO 244
3800
         SUM=SUM-2.*CPCIX)*CLCIX)/CAPCIX)+ALCIX))*CLXPCCAPCIX)+ALCIX))*L)
3810 244 IF((A1(IX)+A1(IX))+T.IT.-90.) GO TO 246
38.20
         SUM=SUM+CL(IX)*CL(JX)/(AL(JX)+AL(IX))*(EXPC(AL(IX)+AL(JX))*T))
33,25
         3830-245-SUM=SUM+CP(IX)*CP(JX)/(AP(IX)+AP(JX))
3832
         SUM=SUM+2.*CP(IX)*C1(JX)/(A1(JX)+AP(IX))
333 4 3
         SUM-SUM-CICIX)*CICIX)/(AICIX)/AICIX))
         SUMI=SUMI-CICIX)*CICIX)/(AICIX)+AICIX))
38 34
3835 242 CONTINUE
3340
         TSUM-SUM/I
         PRINT,""
32345.)
         PRINT, "MEAN SQUARED ERRORS", ISHM
3850
         PRINT.""
3870
          TNORM-SUMIZE
3872
         PRINT, "NORM-", INORM PRINT, ""
4375
3875
3880
         XMSE = USUM / UNORM
         PRINT, "NORMALIZED MSE-", XMSE
3883
3890
         STOP
3900
         IND
30100
        DE TE
10.10*
```

```
3930 FUNCTION DETE(A, NARG, IDIM)
3940 DIMENSION ACIDIM, NARG)
3950 1 N=NARG
3960 SIGN=1.0
3970 NMIN1=N-1
3980 IF(NMIN1 .EQ. 0) GO TO 401
3990 \ D0 \ 391 \ J1 = 1,NMIN1
           ******FIND REMAINING ROW CONTAINING LARGEXT******
4000*
           *******ABSOLUTE VALUE IN PIVOTAL COLUMN*******
4010*
4020 101 TEMP=0.0
4030 DO 121 J2=J1.N
4040 IF(ABS(A(J2,J1)).LT.TEMP) GO TO 121
4050 \text{ TEMP=ABS(A(J2,J1))}
4060 IBIG=J2
4070 121 CONTINUE
4080 IF(TEMP.NE.O.O) GO TO 201
           ***********PIVOTAL COLUMN CONTAINS ALL ZEROES*****
4090*
410) DETE=0.0
4110 GO TO 5001
4120 201 IF (J1.EQ.IBIG) 60 TO 301
           *************INTERCHANGE ROWS AND CHANGE SIGN*******
4140 DO 221 J2=J1.N
4150 TEMP=A(J1,J2)
4160 \text{ A}(J1,J2) = \text{A}(IBIG,J2)
4170 221 A(IBIG, J2)=TEMP
4180 SIGN=-SIGN
           ********BELOW PIVOTAL R
4190*
           *************** AND BEYOND PIVOTAL COLUMN********
4200*
4210 301 N1=J1+1
4220 DO 321 J2=N1.N
4230 TEMP=A(J2,J1)/A(J1,J1)
4240 DO 321 J3=N1,N
4250 321 A(J2,J3)=A(J2,J3)-A(J1,J3)*TEMP
4260 391 CONTINUE
           *************ELEMENTS TIMES (-1) **NO. OF ROW INTERCHA
427:)*
4280 401 DETE=1.0
4290 D0 421 J1=1.N
4300 421 DETE=DETE*A(J1.J1)
4310 DETE=DETE*SIGN
4320 5001 RETURN
4.330 END
4340* ZORP2
4350* ROUTINES FOR SOLVING POLYNOMIALS
           SUBROUTINE POLY(N.A.R.C.PR.PC.RHO.PHI)
4360
           DIMENSION A(9999)
4370
4380
           IF(RHO) 10,5,10
4390
      5
           R=A(1)
           C=O.
4400
           PR=A(2)
4410
4420
           PC=O.
4430
           RETURN
```

```
4440
      10
           V1=1.
4450
           V2=0.
4460
           R=A(1)
4470
            C=0.
4480
            PR=0.
4490
            PC=O.
4500
            W1=RHO*COS(PHI)
            W2=RHO*SIN(PHI)
4510
4520
            NN=N+1
4530
            DO 20 I=2,NN
4540
            T1=W1*V1-W2*V2
4550
            V2=W2*V1+W1*V2
4560
           V1=T1
4570
            R=R+A(I)*V1
4580
            C=C+A(I)*V2
4590
            PR=PR+A(I)*(I-1)*V1
4600
      20
            PC=PC+A(I)*(I-1)*V2
            PR=PR/RHO
4610
            PC=PC/RHO
4620
4630 5001
            RETURN
4640
            END
4650
            SUBROUTINE ARCTA(X,Y,ANGLE)
            PI=3.14159265
4660
            IF(X)10,30,20
4670
4680
            ANGLE=ATAN(Y/X)+PI*SIGN(1.,Y)
      10
4690
            RETURN
4700
      20
            ANGLE=ATAN(Y/X)
4710
            RETURN
4720
      30
            IF(Y)40,60,50
4730
      40
            ANGLE=-PI/2.
4740
            RETURN
4750
      50
            ANGLE=PI/2.
4760
            RETURN
4770
      60
            ANGLE=O.
4780
            RETURN
4790
            END
4800
            SUBROUTINE DOWNH(A, NAR, RR, CR)
            DIMENSION A(9099), RR(9990), CR(9990), Q(101), B(3)
4810
4820
           CALL FXOPT(67,1,1,0)
4830
            J=0
            N=NAR
4840
4850
            NPL1=N+1
4860
            ANPP=A(NPLI)
4870
            DO 102 I=1,NPL1
            IF (A(I))103,102,103
4880
            CONTINUE
4890
       102
4900
       103
            C=ABS(A(I)/A(NPLI))
4910
            LU=120
4920
            LL = -120
4930
            IF(C-2.**[U)100,100,101
4940
       1.00
            IF(C-2.**[L)101,105,105
```

```
4950
       101
            NAR=-NAR
4950
            GO TO 5001
4970
      105
            II=(LU+LL)/2
4980
            IF(C-2.**II)110,110,109
4990
      109
            LL = II
5000
            GO TO 111
5010
       110
            LU = II
5020
       111
            IF(LU-LL-1)5001,112,105
5030
       112
            IB=II/N
5040
            IF(IB) 114,120,114
5050
       114
            DO 115 I=1.NPL1
5060
            II = I - I
       115
5070
            A(I)=A(I)*(2.**(II*IB))
5030
       120
            DO 121 J1=1, NPL1
5090
       121
            A(J1)=A(J1)/A(NPL1)
5100
      201
            IF(N)2001,2001,206
5110
      206
            IF(A(1))301,211,301
5120 211
            J=J+1
5130
            RR(J)=0.
5140
            CR(J)=0.
            DO 221 J1=1,N
5150
5160 221
            A(J1) = A(J1+1)
5170
            N = N - 1
5180
            GO TO 201
5190
       301
            IF(N-2)601,501,401
            CALL GRAD(A,N,X,Y)
5200 401
5210
       421
            IF(ABS(Y)-ABS(X*1.E-4))431,431,441
5220
       4.31
            Y=0.
5230
       441
            J=J+1
5247
            X=(J)RR
5250
            CR(J)=Y
5260
            IF(Y)461,1021,461
5270 461
            J=J+1
5230
            RR(J)=X
5290
            CR(J) = -Y
            GO TO 1011
5300
5319 501
            DISC=A(2)**2-4.*A(1)
5320
            IF(DISC)521,541,541
5.330
      521
            Y=SQRT(-DISC)/2.
5340
            X=-A(2)/2.
5350
            GO TO 421
5350 541
            J=J+1
5370
            RR(J)=(-A(2)+SQRT(DISC))/2.
5380
            CR(J)=0.
5390
            GO TO 1021
5400 601
            J=J+1
5410
            RR(J) = -A(I)
5420
            CR(J)=0.
5430
            GO TO 2001
5440 1011
            B(1)=X**2+Y**2
5450
            B(2) = -2.*X
```

```
5460
            B(3)=1.
5470
            NB=2
5480
            GO TO 1041
5490 1021
            B(1) = -RR(J)
5500
            B(2)=1.
5510
            NB=1
5520 1041
            CALL DIV(A.B.N.NB.Q)
5530
            DO 1061 JI=1.N
5540 1061
            A(J1)=Q(J1)
5550
            IF(CR(J))1081,1071,1081
5560 1071
            N=N-1
5570
            GO TO 201
5580 1081
            N=N-2
5590
            GO TO 201
5600 2001
            IF(IB)2002,2005,2002
5610 2002
            DO 2000 I=1.NAR
5620
            RR(I) = RR(I) \star (2.\star\star(IB))
5630 2000
            CR(I) = CR(I) * (2.**(IB))
            NP1=NAR+1
5640 2005
5650
            DO 2011 I=2.NP1
5660 2011
            A(I)=0.
5670
            A(1)=1.
5680
            NA=0
5690
            J=1
5700 2021
            IF(CR(J))2041,2061,2041
5710 2041
            NB=2
5720
            B(3)=1.
5730
            B(2)=-2.*RR(J)
5740
            B(1)=RR(J)**2+CR(J)**2
5750
            J=J+2
            GO TO 2081
5760
5770 2061
            NB = 1
5780
            B(2)=1.
5790
            B(1) = -RR(J)
5800
            J=J+1
5810 2081
            CALL MTALGD(A, NA, B, NB,Q)
5820
            NA=NB+NA
5830
            NAPL1=NA+1
5840
            DO 2091 I=1, NAPL1
5850 2091
            A(I)=Q(I)
5860
            IF(NA-NAR) 2021, 3001,3001
5870 3001
            DO 3011 J2≈1, NPL1
5880 3011
            A(J2)=A(J2)*ANPP
5890 5001
            RETURN
5900
            END
5910
            SUBROUTINE GRAD(A,N,XZ,YZ)
            DIMENSION A(9999),X(3),Y(3),RP(3),CP(3),RHO(3),PHI(3)
5920
5930
            DIMENSION ABSP(3), PR(3), PC(3)
            PI=3.14159265
5940
5950
            MTST=1
5960 101
            XZ=0.0
5970
            YZ=1.0
```

```
5980
            DZ=2.
5990
            RHOZ=1.
6000
            PHIZ=PI/2.
6010 201
            CALL POLY (N.A.RZ, CZ, PRZ, PCZ, RHOZ, PHIZ)
6020
      221
            SU=SQRT(PRZ**2+PCZ**2)
6030
            ABSPZ=SQRT(RZ**2+CZ**2)
6040
            U=2.*ABSPZ*SU
6050
            PSI=ATAN(U)
            TOP=RZ*PCZ-CZ*PRZ
6050
6070
            BOT=-(RZ*PRZ+CZ*PCZ)
6080
            CALL ARCTA (BOT, TOP, THETA)
6090
            COSI=COS(THETA+PHIZ)
6100
            SINE=SIN(THETA+PHIZ)
6110
            IF(ABSPZ)300.5001.300
6120 300
            IF(SU)301,501,301
6130 301
            IF(RHOZ)321,401,321
6140 321
            IF(ABSPZ/(RHOZ*SU)-1.E-7)5001.5001.701
6150 351
            IF(ABSPZ/(RHOZ*SU)-10.**(-MTST))801.801.401
6160 401
            DZ=DZ/8.0
6170
            IM=O
            100 431 I=1,3
6180
6190
            DZ=2.*DZ
6200
            X(I)=XZ+DZ*COSI
6210
            Y(I)=YZ+DZ*SINE
6220
            RHO(I) = SQRT(X(I) **2 + Y(I) **2)
6230
            CALL ARCTA(X(I), Y(I), PHI(I))
6240
            CALL POLY(N,A,RP(I),CP(I),PR(I), PC(I),RHO(I),PHI(I))
6250
            ABSP(I)=SQRT(RP(I)**2+CP(I)**2)
6260
            IF(ABSPZ-ABSP(I)) 431,431,421
6270 421
            ABSPZ=ABSP(I)
6280
            IM = I
6290 431
            CONTINUE
6300
            IF(IM) 441,441,461
6310 441
            DZ=DZ/8.
6320
            IF(RHOZ) 443, 445, 443
6330 443
            IF(DZ/RHOZ-1.E-7)451,451,401
6340 445
            IF(DZ-1.E-7)451,451,401
6350 451
            IF(SU-ABSPZ) 501,501,5001
6360 461
            DZ=(2.**(IM-2))*DZ
6370
            XZ=X(IM)
6380
            YZ=Y(IM)
6390
            PHIZ=PHI(IM)
6400
            PRZ=PR(IM)
6410
            PCZ=PC(IM)
6420
            RHOZ=RHO(IM)
6430
            RZ=RP(IM)
6440
            CZ=CP(IM)
6450
            GO TO 221
6460 501
            DZ=1.0
6470
            DTHETA=PI/10.
6489 521
            THETA=0.0
```

```
6490
           DO 561 I=1.20
6500
           THETA=THETA+DTHETA
6510
           XS=XZ+DZ*COS(PHIZ+THETA)
            YS=YZ+DZ*SIN(PHIZ+THETA)
6520
6530
           RHOS=SQRT(XS**2+YS**2)
6540
           CALL ARCTA(XS, YS, PHIS)
6550
           CALL POLY(N.A.RS.CS.PRS.PCS.RHOS.PHIS)
            ABSP(1)=SQRT(RS**2+CS**2)
6560
6570
            IF(ABSPZ-ABSP(1))561,561,601
6580 561
            CONTINUE
6590
            DZ=DZ/2.
6600
            IF(RHOS)563,565,563
6610 563
            IF(DZ/RHOS-1.E-7)5001,5001,521
6620 565
            IF(DZ-1.E-7)5001,5001,521
6630 601
            XZ=XS
6640
            YZ=YS
6650
           PHIZ=PHIS
6660
           RHOZ=RHOS
6670
            ABSPZ=ABSP(1)
6680
            PRZ=PRS
6690
            PCZ=PCS
6700
            RZ=RS
6710
            CZ=CS
6720
            GO TO 221
6730 701
            IF(PSI-1.E-6)711,711,351
            IF(SU-ABSPZ)501,501,351
6740 711
6750 801
           RHO(1)=RHOZ+BOT/SU**2
6760
            IF(RHO(1))901,901,816
           PHI(1)=PHIZ+TOP/(RHOZ*SU**2)
6770
      816
6780 821
           CALL POLY(N,A,RZ,CZ,PRZ,PCZ,RHO(1),PHI(1))
6790
            ABSP(1)=SQRT(RZ**2+CZ**2)
6800
            IF(ABSP(1)-ABSPZ)851,881,881
6810
      841
            XZ=RHOZ*COS(PHIZ)
6820
            YZ=RHOZ*SIN(PHIZ)
6830
            GO TO 5001
           RHOZ=RHO(1)
6840
      851
6850
            ABSPZ=ABSP(1)
6860
            PHIZ=PHI(1)
6870
            TOP=RZ*PCZ-CZ*PRZ
6880
            BOT = -(RZ * PRZ + CZ * PCZ)
6890
            SU=SQRT(PRZ**2+PCZ**2)
            IF(SU)855,501,855
6900
6910 855
            U=2.*ABSPZ*SU
            PSI=ATAN(U)
6920
6930
            IF(ABSPZ/(RHOZ*SU)-10.**(-MTST))861,861,901
5940 861
            IF(ABSPZ/(RHOZ*SU)-1.E-7)841.841.871
6950 871
            IF(PSI-1.E-6)881,881,801
6960 881
            IF(SU-ABSPZ)501,501,901
6970 901
            DZ=ABSPZ/SU
6930
            XZ=RHOZ*COS(PHIZ)
6990
            YZ=RHOZ*SIN(PHIZ)
```

```
7000
           MTST=MTST+1
7010
           GO TO 201
7020 5001
           RETURN
7030
           END
7040
           SUBROUTINE MTALGD (AARG, NA, BARG, NB, C)
7050
           DIMENSION AARG(9999), BARG(9999), C(9999), A(101), B(101)
7060 1
           NAPLI=NA+1
7070
           DO 21 J1=1, NAPL1
7080 21
            A(JI) = AARG(JI)
7090
           NBPI_1 = NB + 1
7100
           DO 41 J1=1, NBPL1
7110 41
           B(J1)=BARG(J1)
7120
           NCPL1=NAPL1+NBPL1-1
7130
           DO 91 J1=1,NCPL1
7140
           TEMP=0.
           DO 81 J2=1,J1
7150
            IF(J2-NAPL1) 61,61,81
7160
7170 61
           N2 = J1 - J2 + 1
7180
            IF(N2-NBPL1)71,71,81
7190 71
           TEMP=TEMP+A(J2)*B(N2)
7200 81
            CONTINUE
7210
            C(J1)=TEMP
7220 91
            CONTINUE
7230
           RETURN
7240
           END
7250
           SUBROUTINE DIV(A.B.NA.NB.Q)
7260
           DIMENSION A(9999), B(9999), Q(9999)
7270
            II = NA - NB + I
7280
           DO 61 J1=1, I1
7290
     61
           Q(J1)=0.
7300 101
            KKMAX=NA-NS+1
7310
           DO 391 KK=1.KKMAX
           K = KK - 1
7320
           TEMP=O.
7330 201
7340
            IF(K-1)301,211,211
7350 211
           DO 291 JJ=1.K
7360
            J=JJ-1
7370
            I1=NB-K+J
            IF(I1)291,221,221
7380
7390 221
            I2=NA-NB-J
7400
           TEMP=TEMP+B(I1+1)*Q(I2+1)
7410
      291
            CONTINUE
7420
      301
            II=NA-NB-K
7430
            I2=NA-K
7440
      391
           Q(I1+1)=A(I2+1)-TEMP
7450 5001
           RETURN
7460
            END
7470C
        MTINV
            ****************************
7480*
7490 SU3ROUTINE MTINV(A.NRARG.NCARG.IDIM.LABEL)
```

```
7500 DIMENSION A(IDIM, NCARG), LABEL (NRARG)
7510 1 NR=NRARG
7520 NC=NCARG
7530 DO 21 J1=1,NR
7540 21 LABEL(J1)=J1
7550 DO 291 JI=1,NR
7560*
          **********FIND REMAINING ROW CONTAINING LARGEST***
7570*
          ******** COLUMN******
7580 101 TEMP=0.0
7590 DO 121 J2=J1.NR
7600 IF(ABS(A(J2,J1)).LT.TEMP) GO TO 121
7610 TEMP=ABS(A(J2,J1))
7620 IBIG=J2
7630 121 CONTINUE
7640 IF(IBIG.EQ.JI)GO TO 201
7650*
          7660*
          **********************************
7670 DO 141 J2=1.NC
7680 TEMP=A(J1,J2)
7690 A(J1,J2)=A(IBIG,J2)
7700 141 A(IBIG, J2)=TEMP
7710 I=LABEL(J1)
7720 LABEL(JI)=LABEL(IBIG)
7730 LABEL(IBIG)=I
         ****COMPUTE COEFFICIENTS IN PIVOTAL ROW: ***
7740*
7750 201 TEMP=A(J1.J1)
7760 A(J1.J1)=1.0
7770 DO 221 J2=1.NC
7780 221 A(JI,J2)=A(JI,J2)/TEMP
          7790*
7800 DO 281 J2=1,NR
7810 IF(J2.EQ.J1) GO TO 281
7820 TEMP=A(J2,J1)
7830 \text{ A}(J2.J1)=0.0
7840 DO 241 J3=1,NC
7850 241 A(J2,J3)=A(J2,J3)-TEMP*A(J1,J3)
7860 281 CONTINUE
7870 291 CONTINUE
7880*
          **************INTERCHANGE COLUMNS ACCORDING TO******
7890*
          **************INTERCHANGES OF ROWS OF ORIGINAL MATRIX*
7900 301 NI=NR-1
7910 DO 391 JI=1,NI
7920 DO 321 J2=J1,NR
7930 IF(LABEL(J2).NE.JI) GO TO 321
7940 IF(J2.EQ.J1) GO TO 391
7950 GO TO 341
7960 321 CONTINUE
7970 341 DO 361 J3=1.NR
7980 TEMP=A(J3.J1)
7990 A(J3,J1)=A(J3,J2)
8000 361 A(J3,J2)=TEMP
```

```
8010 LABEL(J2)=LABEL(J1)
8020 391 CONTINUE
8030 5001 RETURN
8040 END
8050C
       MTMPY -- REV. APRIL 1971
8060* HONEYWELL TIME SHARING APPLICATIONS
8070*
          **************************
8080 SUBROUTINE MTMPY(IND, A, B, C, LARG, MARG, N)
8090 DIMENSION A(25,999),B(25,999),C(25,999)
8100 | L=IABS(LARG)
8110 M=IABS(MARG)
8120 I=IND+1
8130 GO TO (101,201,301,401),I
8140 101 DO 121 J1=1.L
8150 DO 121 J2=1,N
8160 C(J1,J2)=0.0
8170 DO 121 J3=1.M
8180 IF(LARG)102,5001,110
8190 102 IF(MARG)103,5001,105
          T(A(M,L))*T(B(N,
8210 103 TEMP=A(J3,J1)*B(J2,J3)
8220 GO TO 121
           ****** X MATRIX
                                               T(A(M,L))*B(M,N)
8230*
8240 105 TEMP=A(J3,J1)*B(J3,J2)
8250 GO TO 121
8260 110 IF(MARG) 111,5001,115
          ****************** X T(MATRIX)
                                               A(L,M)*T(B(N,M))
8270*
8280 111 TEMP=A(J1,J3)*B(J2,J3)
8290 GO TO 121
          A(L,M)*B(M,N)=C(
8300*
8310 115 TEMP=A(J1, J3)*B(J3, J2)
8320 121 C(J1,J2)=C(J1,J2)+TEMP
8330 GO TO 5001
           ******* DIAGONAL X DIAGONAL
                                               A(L,1)*R(L,1)=C(
8340*
8350 201 DO 221 J1=1.L
8360 221 C(JI,I)=A(JI,I)*B(JI,I)
8370 GO TO 5001
8330 301 DO 321 JI=1.L
8390 DO 321 J2=1,M
8400 IF(MARG)310,5001,315
           **********DIAG()NAL X T(MATRIX)
8410*
                                               A(L,1)*T(B(M,L))
8420 310 TEMP=A(J1,1)*B(J2,J1)
8430 GO TO 321
           ************DIAGONAL X MATRIX
                                               A(T, 1) *B(L, M) = C(
8440*
8450 315 TEMP=A(J1,1)*B(J1,J2)
8460 321 C(J1, J2)=TEMP
8470 GO TO 5001
8480 401 DO 421 J1=1,L
8490 DO 421 J2=1,M
8500 IF(LARG)410,5001,415
8510*
           ***********T(MATRIX) X DIAG'NAL
                                               T(A(M,L))*3(M,l)
```

```
8520 410 TEMP=A(J2,J1)\starB(J2,1)
8530 GO TO 421
8540*
           ****** DIAGONAL
                                                   A(L,M)*B(M,1)=C(
8550 415 TEMP=A(J1,J2)*B(J2,1)
8560 421 C(J1, J2)=TEMP
8570 5001 RETURN
8580 END
8590
         SUBROUTINE ATOD(W.XMSB.NBITS)
8600
         IF(NBITS.LE.O) GO TO 80
8610
         U2=0.0
8620
         SIGN=-1.
8630
         IF(W.GE.O.O) SIGN=1.
8640
         XW=W
8650
         D=2.0*XMSB
8660
         XW=XW*SIGN
      20 DELTA2=XMSB
8670
8680
         DO 30 I=1, NBITS-1
8690
      30 DELTA2=DELTA2/2.
3700
         WOUT=2.*(XMSB-DELTA2)
8710
         DO 5 I=1.NBITS
         D=1)/2.0
8720
8730
         Y=ABS (XW-U2)
8740
         IF(Y.LE.DELTA2) WOUT=U2
8750
         X=U2-D
8760
         IF(XW.GE.U2) X=U2+D
8770
       5 U2=X
8780
         IF(XW.LT.DELTA2) WOUT=0.0
      IF(XW.GE.(2.*XMSB-D/2.)) PRINT, "A/D HARD LIMITED SAMPLE"
8790
8800
      70 W=WOUT★SIGN
      80 RETURN
6188
8820
         END
8830
         SUBROUTINE HMAG(RIA, R2A, XL1A, XL2A, R1, R2, XL1, XL2)
8840
         DIMENSION LIM(5), SK(5)
8850
         PI2=2.*3.14159
8860
         PRINT,""
         PRINT,"CALCULATION OF ERROR IN H(S)**2"
8870
8883
         PRINT,""
8890
         J=1
8900
         PRINT: "SYSTEM POLES ARE=", XL1/PI2, XL2/PI2
8910
         PRINT:""
         PRINT: "SYSTEM RESIDUES ARE=".R1*1.E6,R2*1.E6
8920
8930
         PRINT: ""
                                                              DIFFERENCE"
8940
         PRINT:"
                                     MAGNITUDE
                                                   PHASE
                      FREQUENCY
8950
         PI2=2.*3.14159
8960
         XLIA=XLIA*I.E6
8970
         XL2A=XL24*1.E6
8980
         R1=R1*1.E6
8990
         R2=R2*1.E6
9000
         LIM(1)=40
9010
         LIM(2)=19
9020
         LIM(3)=9
```

```
9030
         LIM(4)=10
9040
         LIM(5)=15
9050
          SK(1)=1.E3
9060
          SK(2)=5.E4
9070
          SK(3)=1.E6
9080
          SK(4)=1.E7
9090
          SK(5)=5.E7
9100 200 CONTINUE
9110
          DO 100 I=1,LIM(J)
9120
          XI = I
9130
          XI = XI * SK(J)
          W=PI2*XI
9140
9150
          AHMAG=W*W*((R1A+R2A)**2)+(R1A*XL2A+R2A*XL1A)**2
9160
          AHMAG1 = (W \times W + XL1A \times XL1A) \times (W \times W + XL2A \times XL2A)
9170
          AHMAGT=AHMAG/AHMAG1
9180
          HMAG2=W*W*((R1+R2)**2)+(R1*XL2+R2*XL1)**2
9190
          HMAGI = (W*W+XL1*XL1)*(W*W+XL2*XL2)
92.00
          HMAGT=HMAG2/HMAG1
92:0
          Y1=W*(R1+R2)
9220
          Y2=R1*XL2+R2*XL1
9230
          PHASE=-ATAN2(W.XL1)-ATAN2(W.XL2)+ATAN2(Y1,Y2)
9240
          PHASE=PHASE*360./PI2
9250
          IF(PHASE.LT.O.) PHASE=PHASE+360.
          DBDIF=10.*(ALOG(AHMAGT)/ALOG(10.)-ALOG(HMAGT)/ALOG(10.))
9260
9270
          PRINT, XI, HMAGT, PHASE, DBDIF
9280 100 CONTINUE
9290
          J=J+1
9300
          IF(J.LE.4) GO TO 200
9310
          RETURN
9320
          END
```

APPENDIX B

COMPUTER PROGRAM LISTING FOR THE HYBRID IMPLEMENTATION OF THE IDENTIFICATION TECHNIQUE

This is the listing of the computer program for the hybrid implementation. Note that the subroutines are identical to those listed in Appendix A and are not duplicated here.

```
90C
         HYBRD2P
100
110
          DIMENSION XTA(10), XT(10), X(10), XX(10), R1(10), W(10)
120
         DIMENSION A1(10), AP(10), CP(10), C1(10), CA(10)
130
         DIMENSION G(10,10),Y(3,2420),U(3,2420),A(20,10),C(25,25)
140
         DIMENSION ISN(10), XLX(10), COEF(10), XLAMR(10), XLAMC(10)
150
         DIMENSION RR(10), CR(10), B(25), CRR(10,10), CI(10,10)
160
         DIMENSION LIMITI(10), LABEL(25), S(25,1), R(25,1)
170
         DIMENSION EID(25,25),E(25,25),CS(25,25)
175
         DIMENSION XMSBI(10), XMSBO(10)
180
         INTEGER SN, STEP1, STEP2
190C
          INITALIZATION AND INPUT PARAMETERS
200
         P12=2.*3.14159
210
         ERMS=0.
220
         DELT=4.E-3
230
         SN=2
240
         DO 118 I=1,5N
250
         DO 118 J=1,SN
260 118 EID(I,J)=0.E0
270
         DO 119 I=1,SN
280 119 EID(I.I)=1.E0
290
         PRINT, "ORDER OF LINEAR SYSTEM IS", SN
         PRINT. ""
300
310
         SN2=2*SN
        SK=1.E0
320
330
         M≈2400
340
         MORIG=M
350
         LIMITI(1)=M+1
350
         STEP=SN+1
370
         T=DELT*M
380
         LL=0
390
         XMSHI(1)=1.E-3
391
         XMSHI(2) = .718E-2
392
         XMSHI(3) = .476E - 3
393
         XMSBI(4) = .217E - 2
394
         XMSBI(5) = .325E-2
400
         XMSBO(1) = .9125E - 2
401
         XMSBO(2) = .291E-1
402
         XMSBO(3) = .1926E - 2
403
         XMSB(1(4) = .685E - 2)
404
         XMSBO(5) = .84E-2
410
         NBITS=16
         PRINT, "NUMBER OF BITS IN A/D=", NBITS
420
         PRINT,""
430
440
         PRINT."NUMBER OF WAVEFORM SAMPLES=".M
         PRINT,""
450
         PRINT, "INTEGRATION TIME IN MICROSECONDS=".T
460
         PRINT,""
470
480
         PRINT, "INTEGRATION INTERVAL IN MICROSECONDS=", DELT
```

```
490
         PRINT. ""
500 900 FORMAT(18X,E14.5)
5100
          EVALUATE INPUT AND OUTPUT FUNCTIONS
520
         R1(1)=2.8069192E5
530
         R1(2) = -2.7368441E8
540
         R1(3)=1.E-3
550
         R1(4)=1.51E7
         R1(5)=1.E-3
560
570
         W(1) = .011550998 * PI2
580
         W(2)=10.616986*PI2
500
         W(3) = 10.
600
         W(4)=8.2E-1*PI2
610
         W(5) = .35 * PI2
950
         L=STEP
         AT(SN+1) = -W(SN+1)
630
540
         DO 901 IK=1.SN
650
         Al(IK) = -W(IK)
660
         CA(L) = CA(L) + RI(IK) + RI(L) / ((W(IK) - N(L))) + I_*E_{\delta}
670
         CA(IK)=RI(IK)*RI(I)/((W(I)-W(IK))*I*E6)
080
         CI(IK) = -CA(IK)
690 901 CONTINUE
095
        C1(L) = -C4(L)
700
        DO 999 JK=1,M+1
710
         XJK=JK
720
        U(1,JK)=0.
7.30
         XT3A=-W(STEP)*(XJK-1)*DFUT
140
         IF(XT3A.LT.-80.) GO TO 166
750
         U(I,JK) = EXP(XT3A)
760 166 CONTINUE
770
         U(1,JK)=1.E-3*SK*U(1,JK)
780
         CALL ATOD (U(1, JK), XMSBI(1), NBITS)
190
         DO 902 IJ=1.STEP
800
         X\Gamma(IJ)=0.
810
         XTA(TJ) = -W(TJ) * (XJK-1) * DELT
820
         IF(XTA(I,I).GT.-80.) XT(I,I)=CA(I,I)*EXP(XTA(I,I))
830 902 Y(1,JK)=Y(1,JK)+XT(1,J)
         Y(1,JK)=SK*Y(1,JK)
840
         CALL ATOD(Y(1,JK),XMSBO(1),NBITS)
850
850 999 CONTINUE
         PRINT."
370
                               ACTUAL SYSTEM POLES AND RESIDUES"
880
         PRINT.""
890
         PRINT,"
                             NUMBER
                                           POLE:
                                                          SECTION.
         PRINT.""
900
         PRINT.""
910
920
        DO 446 KL=1.SN
930
         PRINT, KL, ACKLOZPIZ, RICKTO
940 446 PRINT.""
950
         PRINT, ""
400
         M2=M
970
         PRINT, "INPUT MSB=", XMSBI
9HO
         PRINT.""
```

```
PRINT, "OUTPUT MSB=", XMSBO PRINT, ""
990
1000
1002
         JN=SN+1
1005
         DO 137 II = 1, M+1
1010
         XCV = -W(SN+1)*(II-1)*DELT
1012
         IF(XCV.LT.-80.) GO TO 1480
1020
         U(2,II)=RI(JN)/AI(JN)*(EXP(XCV))
1025
         U(3,II)=RI(JN)/(AI(JN)**2)*(EXP(XCV))
1033 1480 U(3, II)=U(3, II)-R1(JN)/A1(JN)*(II-1)*DELT
1034
         U(2, II) = U(2, II) - RI(JN) / AI(JN)
1036
         U(3,II)=U(3,II)-RI(JN)/(AI(JN)**2)
1100 137 CONTINUE
1110
         M2 = M2/2
1120 138 CONTINUE
1135
         DO 101 JK=1,SN+1
1140
          LIMITI(JK)=M+1
1145 101 CONTINUE
1150
         CONST=T/(3.*M)
         DO 13 KK=1.M+1
1160
          DO 117 IL=1,SN+1
1170
1175
         XCV = -W(IL) * (KK-1) * DELT
1177
          IF(XCV.LT.-80.) GO TO 1485
          Y(2,KK)=Y(2,KK)+CA(IL)/AI(IL)*(EXP(XCV))
1180
1190
          Y(3,KK)=Y(3,KK)+CA(IL)/(A1(IL)**2)*(EXP(XCV))
1197 1485 CONTINUE
1193
          Y(2,KK)=Y(2,KK)-CA(IL)/A1(IL)
1200
         Y(3,KK)=Y(3,KK)-CA(IL)/A1(IL)*(KK-1)*DELT
1210
         Y(3,KK)=Y(3,KK)-CA(IL)/(A1(IL)**2)
1265 117 CONTINUE
1270
          DO 39 IJK=2,SN+1
1275
         CALL ATOD (U(IJK, KK), XMSBI(IJK), NBITS)
1280
         CALL ATOD(Y(IJK, KK), XMSBO(IJK), NBITS)
1283 39 CONTINUE
1285 13 CONTINUE
1290 38
         CONTINUE
1310C
          EVALUATE INNER PRODUCTS FOR GRAM DETERMINANT
1320
          M=MORIG
1330
          STEP1=SN+1
1340
          STEP=2*SN+1
         DO 100 K=1.STEP1
1350
1360
         LJ=1
1370
         MI = M
1380
         MSLJ=1
1390 220 LIMIT=M-2
1400
          JAT=0
         CONST=T/(3.*M)
1410
1420 240 CONTINUE
1430C
          EVALUATE G(K,K) FOR K=1.SN
```

```
DO 7 I=1, M-1, 2
1440
1450
         XI = I
1460
         TERMI = CONST
1470
         TERM12=Y(K,I)**2+4.*Y(K,I+1)**2+Y(K,I+2)**2
1480
         TERMI3=TERMI*TERMI2
1490
         G(K,K)=G(K,K)+TERM13
1500
         CONTINUE
1510C
         EVALUATE G(K,KM) FOR J .GT. K TO J=SN+1
1520
         DO 3 J=2.STEP1
1530
         MSLJ=1
1540
         IF(K-J) 435,437,436
1550 435 DO 6 I=1,M-1,2
1560
         XTER2=CONST
1570
         TERM22=Y(K,MSLJ)*U(J,I)
1580
         HSLJ=MSLJ+1
1590
         TERM23=4.*Y(K,HSLJ)*U(J,I+1)
1600
         KSLJ=MSLJ+2
1610
         TERM24=Y(K,KSLJ)*U(J,I+2)
1620
         TFRM2=XTER2*(TERM22+TERM23+TERM24)
1630
         KM=J+SN
1640
         G(K,KM)=G(K,KM)+TERM2
1650
         MSLJ=KSLJ
         CONTINUE
1660
1670
         GO TO 3
1680C
         EVALUATE G(K.KM) FOR K .GT. J TO K=SN+1
1690 436 DO 176 I=1,M-1,2
1700
         XTER2=CONST
1710
         TERM22=Y(K,I)*U(J,MSLJ)
1720
         HSLJ=MSLJ+1
1730
         TERM23=4.*Y(K,I+1)*U(J,HSLJ)
1740
         KSLJ=MSLJ+2
         TERM24=Y(K,I+2)*U(J,KSLJ)
1750
1760
         TERM2=XTER2*(TERM22+TERM23+TERM24)
1770
         KM = J + SN
1780
         G(K,KM)=G(K,KM)+TERM2
         MSLJ=KSLJ
1790
1800 176 CONTINUE
         GO TO 3
1810
1820C
         EVALUATE G(K,KM) FOR K=J
1830 437 DO 276 I=1,M-1,2
1840
         TERM22=Y(K,I)*U(J,I)
1850
         TERM23=4.*Y(K,I+1)*U(J,I+1)
1860
         TERM24=Y(K,I+2)*U(J,I+2)
1870
         XTER2=CONST
1880
         TERM2=XTER2*(TERM22+TERM23+TERM24)
1890
         KM=J+SN
1900
         G(K_{\bullet}KM) = G(K_{\bullet}KM) + TERM2
1910 276 CONTINUE
1920
      3 CONTINUE
1930
         IF(K-STEP1) 236,100,100
1940 100 CONTINUE
1950C
         EVALUATE G(K,K) FOR K=SN+1 TO 2*SN+1
```

```
1960
         DO 8 K=SN+2,SN2+1
         Do 9 I=1,M-1,2
1970
1980
         DER1=T/(3.*M)
         DER2=U(K-SN,I)**?+4.*U(K-SN,I+1)**2+U(K-SN,I+2)**2
1990
2000
         DER3=DER1*DER2
2010
         G(K,K)=G(K,K)+DER3
2020
      9
         CONTINUE
2030
      8
         CONTINUE
         GO TO 425
2040
2050 236 IF(K-SN) 237,237,100
         EVALUATE G(K, LK) FOR K .LT. SN, LK=K+1, SN+1
2060C
2070 237 DO 401 LK=K+1.SN+1
2080
         MMW=LIMIT1(LK)-2
2090
         LJ=1
2100
         DO 402 LI=1.M-1.2
         TERM31=Y(K,LI)*Y(LK,LI)
2110
2120
         KH1 = LI + 1
         TERM32=Y(K,KHI)*Y(LK,LI+I)
2130
2140
         KH2=LI+2
2150
         TERM33=Y(K,KH2)*Y(LK,LI+2)
2160
         TERM34=TERM1
2170
         LJ=LJ+2**FL()AT(LK-K+1)
         TERM3=TERM34*(TERM31+4.*TERM32+TERM33)
2180
         G(K,LK)=G(K,LK)+TERM3
2190
2200 402 CONTINUE
2210 401 CONTINUE
2220 238 IF(K-1) 57,57,58
          EVALUATE G(K+SN.LK+SN) FOR K=2.SN+1, LK=3.SN+1
2230C
2240
      58 DO 601 LK=K+1,SN+1
2250
          MMW=LIMITI(LK)-2
         LJ=1
2260
2270
         DO 602 LI=1.M-1.2
2280
          TEXI=U(K_LI)*U(LK_LI)
2290
          KL1=LI+1
2300
          TEX2=U(K,KL1)*U(LK,LI+1)
2310
          KL2=LI+2
          TEX3=U(K,KL2)*U(LK,LI+2)
2320
2330
          TEX4=TERM1
         LJ=LJ+2**FLOAT(LK-K+1)
2340
2350
          TEX5=TEX4*(TEX1+4.*TEX2+TEX3)
          G(K+SN,LK+SN)=G(K+SN,LK+SN)+TEX5
2360
2370 602 CONTINUE
2380 601 CONTINUE
2390
      57 CONTINUE
2400
          GO TO 100
2410 425 CONTINUE
      PRINT, "UNSCALED ENTRIES IN GRAM DETERMINANT ARE"
2420
           PRINT,"
                                              COLUMN
                                                         INNER PRODUCT"
                                 ROW
2430
           PRINT."
                                                 J
                                                            G(I,J)"
2440
                                  I
           PRINT,""
2450
           STEP1=STEP1+SN
2460
```

```
DO 942 JIK=1.STEP1
DO 943 KLI=1.STEP1
2470
2480
          G(KLI, JIK)=G(JIK, KLI)
2490
25 00
          PRINT, JIK, KLI, G(JIK, KLI)
2510 943 CONTINUE
2520 942 CONTINUE
2530
         MORIG=M
2540
         N=SN2
2550C
         SCALE SCALAR PRODUCTS BY 1.E6 FOR COMPUTATION FACILITY
2560
         DO 1011 I=1,SN2+1
         DO 1021 J=1.SN2+1
2570
2580
         G(I,J)=1.E6*G(I,J)
2590 1021 CONTINUE
2600 1011 CONTINUE
2610C
         EVALUATE DIAGONAL COFACTORS COEF(I)
         PRINT, "DIAGONAL COFACTORS ARE AS FOLLOWS"
2620
         DO 300 J=1,SN2
2630
         DO 310 I=1,SN2
2640
2650
         A(J,I)=G(J+1,I+1)
2660
         A(I,J)=A(J,I)
2670 310 CONTINUE
2680 300 CONTINUE
2690
         ID=1
2700
         COEF(1) = DETE(A, N, 20)
2710
         PRINT, ID, COEF(1)
2720
         DO 500 LKJ=1.SN
         DO 400 J=1,LKJ
2730
         DO 410 I=1,LKJ
2740
2750
         A(J,I)=G(J,I)
2760
         A(I,J)=G(I,J)
2770 410 CONTINUE
2780 400 CONTINUE
2790
         DO 510 J=1,IKJ
         DO 520 I=LKJ+1,SN2
2800
2810
         A(J,I)=G(J,I+1)
2820
         A(I,J)=A(J,I)
2830 520 CONTINUE
2840 510 CONTINUE
2850
         DO 600 J=LKJ+1, SN2
2860
         DO 610 I=LKJ+1,SN2
         A(J,I)=G(J+1,I+1)
2870
2880
          A(I,J)=A(J,I)
2890 610 CONTINUE
2900 600 CONTINUE
2910
         COEF(LKJ+1)=DETE(A.N.20)
2920
         PRINT, LKJ+1, COEF(LKJ+1)
2930
         I.NM=LKJ+1
2940 500 CONTINUE
         PRINT, "EIGENVALUE EQUATION COEFFICIENTS ARE"
2950
29600
         EVALUATE EIGENVALUE EQUATION COEFFICIENTS B(I)
2970
         DO 640 I=1,SN+1
```

```
2980
         B(I)=SQRT(ABS(COEF(SN+2-I)))
2990
         PRINT.I.B(I)
3000 640 CONTINUE
3010C
         EVALUATE SYSTEM POLES
3020
         N=SN
3030
         PRINT, "POLES OF SYSTEM ARE GIVEN BELOW"
3040
         PRINT."
                             NUMBER
                                      REAL (MHZ)
                                                    IMAG(MHZ)"
3050
         CALL DOWNH(B, N, RR, CR)
3060
         DO 650 J=1.SN
3070
         XLAMR(J) = RR(J)/PI2
3080
         XLAMC(J)=CR(J)/PI2
3090
         AP(J)=RR(J)*1.E6
3095
         A1(J)=1.E6*A1(J)
31.00
         PRINT, J, XLAMR(J), XLAMC(J)
3110
         XLAMR(J) = RR(J)
3120 650 CONTINUE
3130
         RR(SN+1) = -W(SN+1)
3131
         A1(SN+1)=1.E6*A1(SN+1)
3140
         AP(SN+1)=RR(SN+1)*1.E6
3150C
         EVALUATE SYSTEM RESIDUES
3160
         FLAG=1
3170
         DO 660 K=1,SN+1
3180
         IF(XLAMC(J)) 670,660,670
3190 670 FLAG=0
3200 660 CONTINUE
3210
          IF(FLAG) 680,680,690
3220 690 DO 700 I=1.SN
         DO 710 J=1,SN
3230
3240
         TEMPI=1
         DO 711 L=1.I
3250
         TEMPI=TEMPI*XLAMR(J)
3260
3270 711 CONTINUE
3280
         EWEI=0.
3290
         EWE2=0.
3300
         EWE=1./(TEMP1*(XLAMR(J)+W(SN+1)))
3310
         EWEIA=XLAMR(J)*T
3320
         EWE2A=-W(SN+1)*T
3,330
         IF(EWE2A.GT.-80.) EWE2=EXP(EWE2A)
3340
         IF(EWELA.GT.-80.) EWEL=EXP(EWELA)
3350
         C(I,J) = EWE * (EWE1 - EWE2)
3360
         C(I,J)=I.E+3*SK*C(I,J)
3370
         TEMP=0.
3380
         DO 720 K=1.I
3390
         TEMP2=1.
3400
         DO 721 KK=1, I+1-K
3410
         TEMP2=TEMP2*XLAMR(J)
3420 721 CONTINUE
3430
          TEMP=TEMP+U(K+1.LIMIT1(K+1))/TEMP2
3440 720 CONTINUE
3450
         C(I,J)=C(I,J)-TEMP
3455
         CS(I,J)=C(I,J)
3460 710 CONTINUE
```

```
3470 700 CONTINUE
         CALL MTINV(C,N,N,25,LABEL)
3480
3490
         ICOUNT=1
3500
         EPS=1.E-3
3510 987 CALL MTMPY(0,CS,C,E,N,N,N)
         DO 763 I=1.SN
3520
         DO 763 J=1,SN
3530
3540
         E(I,J)=EID(I,J)-E(I,J)
3550 763 CONTINUE
3560
         TEMPO=0.E0
3570
         DO 764 I=1.5N
3580
         XNOR=O.EO
3590
         DO 765 J=1.SN
3600
         XNOR=XNOR+ABS(E(I,J))
3610 765 CONTINUE
3620
         IF(XNOR.GT.TEMPO) TEMPO=XNOR
3630 764 CONTINUE
3640
         IF(TEMPO.GT.1.0) GO TO 997
3650
         IF(TEMPO.LT.EPS) GO TO 998
3660
         DO 766 I=1.SN
3670
         DO 767 J=1,SN
3689 767 E(I,J)=EID(I,J)+E(I,J)
3690 766 CONTINUE
         CALL MTMPY(O,C,E,G,N,N,N)
3700
3710
         DO 768 I=1, SN
3720
         DO 768 J=1,SN
3730
         C(I,J)=G(I,J)
3740 768 CONTINUE
3750
         IF(ICOUNT.GT.5) GO TO 998
3760
         ICOUNT=ICOUNT+I
3770
         GO TO 987
3780 997 PRINT, "NORM TOO LARGE", TEMPO
3790 998 CONTINUE
3800
         DO 740 I=2.5N+1
3810
         S(I-I,I)=Y(I,LIMITI(I))
3820 740 CONTINUE
3830
         CALL MTMPY(O,C,S,R,SN,SN,1)
3840
         PRINT, "RESIDUES OF SYSTEM POLES ARE GIVEN BELOW"
3850
         DO 751 I=1,SN
3860
         PRINT, I,R(I,1)*1.E6
3870 751 CONTINUE
3880
         GO TO 1000
3890 680 CONTINUE
3900 1000 CONTINUE
3910
         PRINT,"
                           PERCENTAGE ERROR"
         PRINT,""
3920
         PRINT,"
3930
                     NUMBER
                                  POLE
                                             RESIDUE"
3940
         PRINT,""
         DO 346 I1=1.SN
3950
3960
         X(I1)=100.*(R(I1,1)*1.E6-R1(I1))/R1(I1)
3970
         XX(I1)=100.*(AP(I1)-A1(I1))/A1(I1)
```

```
3930 346 PRINT, II, X(II), YY(II)
3990
         PRINT,""
         PRINT, ""
4000
                                                                   DIFFERENCE"
4010 PRINT."
                         JK
                                      ACTUAL
                                                   PREDICTED
4020
         SUM=O.
4025
         SUMI=O.
4030
          J=SN+1
4040
          DO 341 JI=1,SN
4050
         CP(JI)=R(JI,1)*RI(J)/(-W(J)-RR(JI))
         CP(J) = CP(J) + R(JI, 1) + RI(J) / (W(J) + RR(JI))
4050
4070 341 CONTINUE
4072
          IJK=0
         DO 247 JK=1,MORIG+1
4080
4090
         XJK=JK
          YOUT=O.O
4100
         DO 343 IJ=1,SN+1
4110
4120
          XT(IJ)=0.0
          XTA(IJ) = RR(IJ) * (XJK-1) * DELT
4130
          IF(XTA(IJ).GT.-30.) XT(IJ)=CP(IJ)*FXP(XTA(IJ))
4140
4150
          YOUT=YOUT-SK*XT(IJ)
4150 343 CONTINUE
417)
         DELOUT=YOUT-Y(1,JK)
4130
          IJK=IJK+1
4190
          IF(IJK.GE.100) GO TO 248
4200
          GO TO 249
4210 248 IJK=0
4220
         PRINT, JK, Y(1, JK), YOUT, DELOUT
4230 249 CONTINUE
4240 247 CONTINUE
4250
          T=T*1.E-3
          DO 242 IX=1,SN+1
426)
          190 242 JX=1,SN+1
4270
4215
          SUM = SUM - CP(IX) * CP(JX) / (AP(IX) + AP(JX))
          IF((AP(IX)+AP(JX))*T.LT.-90.) GO TO 243
4230
4290
          SUM=SUM+CP(IX)*CP(JX)/(AP(IX)+AP(JX))*(EXP((AP(IX)+AP(JX))*T))
4295 243 SUM=SUM+2.*CP(IX)*C1(JX)/(AP(IX)+A1(JX))
          IF((AP(IX)+AI(JX))*T.I.T.-90.) GO TO 244
+300
4310 SUM=SUM-2.*CP(IX)*C1(JX)/(AP(IX)+A1(JX))*(FXP((AP(IX)+41(JX))*T))
4315 244 SUM=SUM+C1(IX)*C1(JX)/(A1(IX)+A1(JX))
4317
          SUM1=SUM1-C1(IX)*C1(JX)/(A1(IX)+A1(JX))
4320
          IF((A1(IX)+A1(JY))*T*LT*-90*) GO TO 242
          SUM=SUM+C1(IX)*C1(JX)/(A1(JX)+A1(IX))*(EXP((A1(IX)+A1(JX))*T))
4330
4335 SUMI=SUMI+CI(IX)*CI(JX)/(A1(IX)+A1(JX))*(EXP((A1(IX)+A1(JX))*T))
1340 242 CONTINUE
435)
          TSUM=SUM/T
          SUMMOR=SUMI/T
4352
          PRINT, "NORM=", STYNOR PRINT, ""
4353
4354
          TNORM=TSUM/SUMNOR
4355
          PRINT.""
4350
          PRINT, "MEAN SQUARED FRROR=", TSUM
PRINT, ""
437)
433)
          PRINT.
          PRINT, "HORMALIZED MSE=#, Tuong
4355
4399
          STOP
4400
          ETD
```

APPENDIX C

COMPUTER PROGRAM LISTING FOR THE ANALOG IMPLEMENTATION OF THE IDENTIFICATION TECHNIQUE

This is the listing of the computer program for the analog implementation. Note that the subroutines are identical to those listed in Appendix A and are not duplicated here.

```
560
        PRINT, ""
570
        PRINT, "INTEGRATION TIME IN MICROSECONDS=".T
580
        PRINT,""
590
        PRINT, "INTEGRATION INTERVAL IN MICROSECONDS=", DELT
        PRINT, ""
600
610 900 FORMAT(18X,E14.5)
         EVALUATE INPUT AND OUTPUT FUNCTIONS
620C
630
        R1(1)=2.8069192D5
640
        R1(2) = -2.7368441D8
650
        R1(3)=1.0-3
660
        R1(4)=1.51D7
670
        R1(5)=1.D-3
680
        W(1)=1.1550998D-2*PI2
690
        W(2)=1.0616986D1*PI2
700
        W(3) = 10.
710
        W(4) = 8.2D - 1 * PI2
720
        W(5) = .35 * PI2
730
        L=STEP
740
        AI(SN+1)=-W(SN+1)-GAMMA
750
        DO 901 IK=1,SN
760
        AI(IK) = -W(IK) - GAMMA
770
        CA(L)=CA(L)+R1(IK)+R1(L)/((W(IK)-W(L))+1.E6)
780
        CA(IK)=R1(IK)*R1(L)/((W(L)-W(IK))*1.E6)
790
        CI(IK)=CA(IK)
800 901 CONTINUE
810
        CI(L)=CA(L)
        XJK=JK
820
830
        U(1,JK)=0.
840
        XT3A=-W(STEP)*(XJK-1)*DELT
850
         IF(XT3A.LT.-80.) GO TO 166
860
        U(1,JK)=DEXP(XT3A)
870 166 CONTINUE
880
        U(1,JK)=1.D-3*SK*U(1,JK)
900
        DO 902 IJ=1,STEP
910
        XT(IJ)=0.
920
        XTA(IJ) = -W(IJ) * (XJK-1) * DELT
930
         IF(XTA(IJ).GT.-80.) XT(IJ)=CA(IJ)*DEXP(XTA(IJ))
940 902 Y(1,JK)=Y(1,JK)+XT(IJ)
950
        Y(1,JK)=SK*Y(1,JK)
970 999 CONTINUE
        PRINT,"
980
                              ACTUAL SYSTEM POLES AND RESIDUES
        PRINT.""
990
          PRINT,"
                                           POLE
                                                          RESIDUE"
1000
                             NUMBER
          PRINT,""
1010
          PRINT.""
1020
1030
          DO 446 KL=1.SN
1040
          PRINT, KL, W(KL)/PI2, RI(KL)
1050 446 PRINT,""
          PRINT.""
1060
1070
          M2=M
1090
          PRINT.""
```

```
100C
           ANALOG IMPLEMENTATION----TWO POLES--
105C
           IMPERFECT INTEGRATOR ---
107C
             VERSION 2---
         IMPLICIT DOUBLE PRECISION(A-H, 0-Z)
110
120
         DIMENSION FA(10)
          DIMENSION XTA(10), XT(10), XAX(10), XX(10), R1(10), W(10)
130
140
         DIMENSION A1(10), AP(10), CP(10), C1(10), CA(10)
150
         DIMENSION G(10,10),Y(5,1),U(5,1),A(20,10),C(25,25)
160
         DIMENSION ISN(10), XLX(10), COEF(10), XLAMR(10), XLAMC(10)
170
         DIMENSION RR(10), CR(10), B(25), CRR(10, 10), CI(10, 10)
         DIMENSION LIMITI(10), LABEL(25), S(25,1), R(25,1)
180
190
         DIMENSION EID(25,25), E(25,25), CS(25,25)
         DIMENSION XMSBI(10), XMSBO(10)
,200
210
         INTEGER SN.STEP1.STEP2
          INITALIZATION AND INPUT PARAMETERS
220C
230
         PI2=2.*3.14159
235 SG=0.
240
         ERMS=0.
250
         DELT=4.D-3
260
         SN=2
270
         DO 118 I=1.SN
280
         DO 118 J=1,SN
290 118 EID(I, J)=0.D0
300
         DO 119 I=1.SN
310 119 EID(I,I)=1.D0
         PRINT, "ORDER OF LINEAR SYSTEM IS", SN
320
         PRINT,""
330
         SN2=2*SN
340
 350
         SK=1.D0
360
         M = 2400
370
         MORIG=M
380
         LIMITI(1)=1
390
         STEP=SN+1
 400
         T=DELT*M
405 GAMMA=O.
406
         GAMMA=GAMMA*PI2
 410
         I.I.=0
 420
         XMSBI(1)=1.D-3
 430
         XMSBI(2) = .228D - 3
 440
         XMSBI(3) = .1D-2
 450
         XMSBI(4) = .217D-2
         XMSBI(5) = .325D-2
 460
         XMSBO(1) = .587D - 3
 470
 480
         XMSBO(2) = .127D-2
 490
          XMSBO(3) = 4.D-3
 500
          XMSBO(4) = .685D-2
 510
          XMSBO(5) = .84D-2
 520
          NBITS=0
          PRINT, "NUMBER OF BITS IN A/D=", NBITS
 530
          PRINT.""
 540
          PRINT, "NUMBER OF WAVEFORM SAMPLES=".M
 550
```

```
11.00
         PRINT, "INTEGRATOR LOW FREQ CUTOFF (HERTZ)", GAMMA/(PI2*1.D-6)
1110
         PRINT, ""
         PRINT, "MULTIPLIER ERROR(%) = ", SG*100.
1115
         PRINT, ""
1116
1120
         JN=SN+1
1125
         SC=-GAMMA*T
1130
         II=1
1140
         XCV=-W(SN+1)*M*DELT
1150
         IF(XCV.LT.-80.) GO TO 1480
1160
         U(2,II)=RI(JN)/AI(JN)*(DEXP(XCV))
         U(3, II)=R1(JN)/(A1(JN)**2)*(DEXP(XCV))
1170
1180
         II(4,II)=RI(JN)/(AI(JN)**3)*(DEXP(XCV))
1190
         U(5,II)=RI(JN)/(AI(JN)**4)*(DEXP(XCV))
1200 1480 U(3, II)=U(3, II)-R1(JN)*DEXP(SC)/A1(JN)*(II-1)*DELT
         U(2,II)=U(2,II)-RI(JN)*DEXP(SC)/AI(JN)
1210
          U(4, II)=U(4, II)-R1(JN)*DEXP(SC)/(A1(JN)**2)*(II-1)*DELT
1220
1230
         U(3, II) = U(3, II) - R1(JN) * DEXP(SC)/(A1(JN) * * 2)
1240
         U(4, II) = U(4, II) - RI(JN) *DEXP(SC)/(2.*AI(JN)) *(II-I) *(II-I)
         *DELT*DELT
         U(4,II)=U(4,II)-R1(JN)*DEXP(SC)/(A1(JN)**3)
1250
         U(5, II)=U(5, II)-R1(JN)*DEXP(SC)/(A1(JN)**3)*(II-1)*DELT
1250
         U(5, II)=U(5, II)-R1(JN)*DEXP(SC)/(2.*A1(JN)**2)*(((II-1)
1270
         *DELT) **2)
         U(5, II)=U(5, II)-R1(JN)*DEXP(SC)/(6.*A1(JN))*(((II-1)*DELT)**3)
1230
1290
         U(5, II)=U(5, II)-R1(JN)*DEXP(SC)/(A1(JN)**4)
1300 137 CONTINUE
1310
         M2 = M2/2
1320 138 CONTINUE
1340
         DO 101 JK=1,SN+1
1350
         LIMITI(JK)=1
1360 IOI CONTINUE
1370
         C()NST=T/(3.*M)
1380
         KK = 1
         DO 117 IL=1,SN+1
1390
1400
         XCV=-W(IL)*M*DELT
1410
         IF(XCV.LT.-80.) GO TO 1485
1420
         Y(2,KK)=Y(2,KK)+CA(IL)/A1(IL)*(DEXP(XCV))
1430
         Y(3,KK)=Y(3,KK)+CA(IL)/(A1(IL)**2)*(DEXP(XCV))
1440
         Y(4,KK)=Y(4,KK)+CA(IL)/(A1(IL)**3)*(DEXP(XCV))
1450
         Y(5,KK)=Y(5,KK)+CA(IL)/(A1(IL)**4)*(DEXP(XCV))
1460 1485 CONTINUE
1470
         Y(2,KK)=Y(2,KK)-CA(IL)*DEXP(SC)/A1(IL)
1480
         Y(3,KK)=Y(3,KK)-CA(IL)*DEXP(SC)/A1(IL)*(KK-1)*DELT
1490
         Y(3,KK)=Y(3,KK)-CA(IL)*DEXP(SC)/(A1(IL)**2)
1500
         Y(4,KK)=Y(4,KK)-CA(IL)*DEXP(SC)/(2.*A1(IL))*((KK-1)*DELT)**2
1510
         Y(4,KK)=Y(4,KK)-CA(IL)*DEXP(SC)/(A1(IL)**2)*(KK-1)*DELT
1520
         Y(4,KK)=Y(4,KK)-CA(IL)*DEXP(SC)/(A1(IL)**3)
1530
         Y(5,KK)=Y(5,KK)-CA(IL)*DEXP(SC)/(Al(IL)**3)*(KK-1)*DELT
1540
         Y(5, KK) = Y(5, KK) - CA(IL) *DEXP(SC) / (6.*Al(IL)) * ((KK-1) *DELT) ** ?
```

```
Y(5,KK)=Y(5,KK)-CA(IL)*DEXP(SC)/(2.*A1(IL)**2)*(((KK-1)
1550
         *I)ELT) **2)
1560
         Y(5,KK)=Y(5,KK)-CA(IL)*DEXP(SC)/(A1(IL)**4)
1570 117 CONTINUE
1530 13 CONTINUE
1590C
          EVALUATE INNER PRODUCTS FOR GRAY DETERMINANT
1600
         M=MORIG
1610
         STEP1=SN+1
1620
         STEP=2*SN+1
         SUM=O.
1630
1640
         DO 1 I=1, STEP1
         DO 1 J=1,SN+1
1650
1660
         SUM=SUM-C1(I)*C1(J)/(A1(I)+A1(J))
1670
         S3=(A1(I)+GAMMA+A1(J)+GAMMA)*T
         IF(S3.LT.-90.) GO TO 1
1680
1690
         SUM=SUM+C1(I)*C1(J)/(A1(I)+A1(J))*DEXP(S3)
1700
         CONTINUE
1710
         G(1,1)=SUM
1715
         G(1,1)=(1.+SG*UNIFM2(10.,0.,2.))*G(1,1)
1720
         SUM=O.
1730
         DO 2 I=1,STEP1
1740
         SUM = SUM + C1(I) * C1(I) / (2.* 1(I) * * 2)
1750
         X1=X1+C1(I)/A1(I)
1750
          S3=2.*(AI(I)+GAMA)*T
1770
         IF(S3.LT.-90.) GO TO 2
1780
         SUM=SUM+C1(I)*C1(I)/(2.*A1(I)**2)*DEXP(S3)
1790
         CONTINUE
1800
         DO 3 I=1,SN+1
1810
         53=A1(I)*T
         IF(S3.GT.-90.) SUM=SUM-X1*C1(I)/A1(I)*DEXP(S3)
1820
         DO 3 J=1,STEP1
1830
1840
         IF(J.LE.I) GO TO 3
1850
         SUM=SUM+C1(I)*C1(J)/(A1(I)*A1(J))
1860
         S3=(A1(I)+GAMMA+A1(J)+GAMMA)*T
1870
         IF(S3.LT.-90.) GO TO 3
1880
         SUM=SUM+C1(I)*C1(J)/(A1(I)*A1(J))*DEXP(S3)
1890
      3 CONTINUE
1900
         G(1,2)=SUM
1905
         G(1,2)=(1.+SG*UNIFM2(10.,0.,2.))*G(1,2)
1910
         SUM=0.
1920
         DO 4 I=1,STEP1
1930
         DO 4 J=1,STEP1
1940
         SI=AI(I)+AI(J)
1950
         S2=\Lambda1(I)*\Lambda1(J)
         SUM=SUM+C1(I)*C1(J)/S2*(1./A1(I)+1./A1(J)+T-1./S1)
1960
1970
         53=(A1(I)+GAMMA+A1(J)+GAMMA)*T
1980
         IF(S3.LT.-90.) GO TO 41
1990
         SUM=SUM+C1(I)*C1(J)/(A1(I)*A1(J))*(1./(A1(I)+A1(J)))*DEXP(S3)
2000
      41 S3=A1(I)*T
2010
          IF(53.LT.-90.) GO TO 42
2020
          SUM=SUM-C1(I)*C1(J)/S2*DEXP(S3)/A1(I)
```

```
203)
      42 S3 = A1(J) *T
2047
          IF(S3.LT.-90.) GO TO 4
2050
         SUM=SUM-C1(I)*C1(J)/S2*DEXP(S3)/A1(J)
2060
      4 CONTINUE
2070
2270
          G(2,2) = SUM
2275
         G(2,2)=(1.+SG*UNIFM2(10.,0.,2.))*G(2.2)
2280
         SUM=0.
2290
          F=C1(1)/A1(1)+C1(2)/A1(2)+C1(3)/A1(3)
         FA(1)=C1(1)/A1(1)*(C1(2)/(A1(1)*A1(2))+C1(3)/(A1(1,*A1(3)))
2300
2310
         FA(1)=FA(1)-C1(1)/A1(1)*(C1(2)/(A1(2)**2)+C1(3)/(A1(3)**2))
2320
         FA(1)=FA(1)-F*T*C1(1)/A1(1)
2330
          FA(2)=CI(2)/AI(2)*(CI(1)/(AI(1)*AI(2))+CI(3)/(AI(2)*AI(3)))
2340
          FA(2) = FA(2) - C1(2) / A1(2) * (C1(1) / (A1(2) * * 2) + C1(3) / (A1(3) * * 2))
2350
          FA(2)=FA(2)-F*T*C1(2)/A1(2)
          FA(3)=C1(3)/A1(3)*(C1(1)/(A1(1)*A1(3))+C1(2)/(A1(2)*A1(3)))
2350
          FA(3)=FA(3)-C1(3)/A1(3)*(C1(2)/(A1(2)**2)+C1(1)/(A1(1)**2))
2370
2380
          FA(3)=FA(3)-F*T*C1(3)/A1(3)
2390
          DO 10 I=1.SN+1
2400
          53=A1(I)*T
2410
          IF(S3.LT.-90.) GO TO 9
2420
          SUM = SUM + FA(I) * DEXP(S3)
2430
         CONTINUE
2440
          53=2.*(A1(I)+GA'MA)*T
2450
          IF(S3.LT.-90.) GO TO 10
2460
          SUM=SUM+C1(I)*C1(I)/(2.*A1(I)**3)*DEXP(S3)
2470
      10 SUM = SUM - C1(I) * C1(I) / (2.*A1(I) * * 3)
2480
         DO 11 I=1.SN+1
2490
          DO 11 J=1.SN+1
2500
          IF(J.LE.I) GO TO 11
          X1=C1(I)*C1(J)/(A1(I)+A1(J))*(1./(A1(I)**2)+1./(A1(J)**2))
2510
2520
          SUM=SUM-X1
2530
          S3=(A1(I)+GA'MMA+A1(J)+GA'MA)*T
2540
          IF(S3.LT.-90.) GO TO 11
2550
          SUM=SUM+X1*DEXP(S3)
      II CONTINUE
2560
25/0
          G(1,3)=SUM
2575
          G(1,3)=(1.+SG*UNIF42(10.,0.,2.))*G(1,3)
2580
          X=C1(1)/A1(1)
2590
          YA = C1(2)/A1(2)
2500
          Z=C1(3)/A1(3)
2610
          TOT=X+YA+Z
2620
          F1=X*X+2.*X*YA+2.*X*Z+YA*YA+2.*YA*Z+Z*Z
      F2=2.*X*X/A1(1)+2.*X*YA/A1(1)+2.*X*YA/A1(2)+2.*X*Z/A1(1)+2.
2533
          *X*7/41(3)
          F2=F2+2.*YA*YA/A1(2)+2.*YA*Z/A1(2)+2.*YA*Z/A1(3)+2.*7*Z/A1(3)
2640
          F3=X*X/(A1(1)**?)+2.*X*YA/(A1(1)*A1(2))+2.*X*Z/(A1(1)*A1(3))
2650
2650
          F3=F3+YA*YA/(A1(2)**2)+2.*YA*Z/(A1(2)*A1(3))+Z*Z/(A1(3)**2)
          F4=X*X+X*YA+X*Z
267)
2690
          F4=-2.*F4/A1(1)
2690
          F5=-2./\Lambda1(2)*(X*YA+YA*Z+YA*YA)
```

```
2700
                                          10--2./41(3)*(***+Y****+/***)
2710
                                          F-7--2.*X*(X/(41(1)**))+Y\/(41(1)*41(2))+*/(41(1)*41(3)))
2720
                                          IB:-/.*YA*(\/(41(1)*A1(/))*YA/(A1(/)**A))*'/(A1(/)*A1(3)))
2230
                                          199--2.x/*(X/CA1C1)*A1C3))+YA/CA1C/)\A1C3\)+ '/(A1C3)*A/\)
274)
                                          ****** 1-1 * ( [ 4 A 3 ) / 3, * F */ * * F * | 1 / ( A [ + F 3 A [ + F 1 ] / ( A [ ( 1 ) * A [ * F 1 ] ) ) )
2750
                                          SPESTERS/(ATC))**/)**/SC(ATC3)**/)-!//ATC1)-PR/ATC1)-T9/ATC3)
2750
                                          ETATIONAL
2770
                                           11 (11.11.-00.) (1) 10 01
2783
                                          2120
                          21 E25A1C23&1
 MAY
                                           1EO:2.11.-90.5 Ga 10 22
 2810
                                          2820
                            12 1 1-11 (i) +1
2830
                                           TECH3.11.-90.3 GO TO 23
                                          SHY ~SHILE (1:5x (1:741 (3)-1. \(\dagger) 1) \(\dagger) \) \(\dagger) \(\dagger) \(\dagger) \dagger) \(\dagger) \dagger) \(\dagger) \dagger) \(\dagger) \dagger) \(\dagger) \dagger) \(\dagger) \dagger) \dagger) \(\dagger) \dagger) \dagger) \dagger) \(\dagger) \dagger) \dagg
 234.1
2500
                            DALLACO S.C.
                                           DO 24 1-1,58+1
13360
2870
                                          51,500 (1) (1) 44,500 (2),441 (1) 4450
2433
                                          5000 000-00
 2,000
                                          SECONDARY FOR CITY AND A SECOND
 2000
                                           H 053-1 F.-90. ) 30 Fo 24
  2910
                                          STUDENT FRANKLY (POST)
1921
                          24 CONTINUE
 2033
                                          13 3 - CALCED + CA 11/14 + A 1 (2) + C1/1/14 A 1 + T
 204.1
                                          2001
                                          ちには一見りに 出りた
 1200
                                           11 (53.11.-90.1 3) 70 75
 2273
                                          SUB-COLORDA NAME OF STREET
  2020.3
                                  74 CALCED A CALCARA A PRACE (1) 1 A CALCARA (1) CALCAR
 2000
                                          5000-5004-54
  11111
                                          TECS.11.-90.1 G1 TO 28
  301.1
                                          STIME STIME STATE OF SPICES OF
  3(1,13)
                            3030
                                           54 2.*******************************
   3(14)
                                          5419-5413-54
  4, 14, 1
  3,37,3
                                           TECH. 17. -93. V 30 TO 27
                                          SOME SUPERSORANDE NECES TO
  3070
   4,300,3
                          DATEMOS AS
   1,000
                                          3 (3, 3) m. m.
   4000
                                           GOT, BY CL. PROMUNITY, CON., O., 2. YEARCH, BY
                                          GE \*(-).*\/\1(1)-\\4/\1()\-\\/\1(1)-\\(1\)
  41.30
                                           CONTAC - 1. *YAZAT(.) > -. ZAT(3) - XZAT(1) - XZAT(.) > - ZAT(.) > >
  3110
  31.23
                                          G3r; *(-).* '/41(3)-Y/A1(1)-YA/A1(3)-\/A1(3)-Y/A1(3)-Y/A1()))
  1111
                                          न्याम न्यः
                                          00 12 I 1, SN+1
  23 4 1
    4.1
                                          15 35 A1 (11*1
  · 1 · ·
                                           18 CS 3-11. - 90. 1 32 TO 12
                                              CONTRACTOR AND THE CONTRACTOR OF A CONTRACTOR AND A CONTR
```

TO CONTINUE

```
3200
         D1=X**2/A1(1)+X*YA/A1(2)+X*Z/A1(3)+YA**2/A1(2)+YA*Z/A1(3)
3210
         D1=D1+Z*Z/\Lambda1(3)
3220
         [D1=D1+X*YA/A1(1)+X*Z/A1(1)+YA*Z/A1(2)
3230
          SUM=SUM+D1*T
3241)
         B1=X*X+2.*X*YA+2.*X*Z+YA*YA+2.*YA*Z+Z*Z
3250
         SUM=SUM+31*T*T/2.
3260
         SUM=SUM-G1/A1(1)-G2/41(2)-G3/A1(3)
3270
          S3=AI(1)*T
3280
          IF(S3.LT.-90.) GO TO 40
3290
          SUM = SUM + GI/AI(1) *DEXP(S3)
3300
      40 S3=A1(2)\starT
3310
          IF(S3.LT.-90.) G7 T0 14
3320
          SUM=SUM+G2/41(2)*DEXP(S3)
3330
      14 53=A1(3)*T
3340
          IF(S3.LT.-90.) GO TO 15
          SUM=SUM+G3/A1(3)*DEXP(S3)
3350
3360
      15 CONTINUE
         DO 16 I=1,SN+1
3370
          SUM=SUM-C1(I)*C1(I)/(2.*A1(I)**4)
3380
3390
          S3=2.*(A1(I)+GAMMA)*T
3400
          IF(S3.LT.-90.) GO TO 16
3410
          SUM=SUM+CI(I)*CI(I)/(2.*AI(I)**4)*DEXP(S3)
3420
      16 CONTINUE
3430
          S3=(A1(1)+GAMMA+A1(2)+GAMMA)*T
3440
          IF(S3.1.T.-90.) GO TO 61
3450
          SUM=SUM+X*YA*(1./A1(2)+1./A1(1))*DEXP(S3)
3460
      61 S3 = (A1(1) + GAMMA + A1(3) + GAMMA) *T
3470
          IF($3.LT.-90.) GO TO 62
3430
          SUM=SUM+X*Z*(1./A1(3)+1./A1(1))*DEXP(S3)
3490
      62 S3=(A1(2)+GAMMA+A1(3)+GAMMA)*T
3500
           IF(S3.LT.-90.) GO TO 63
3510
          SUM = SUM + YA \times Z \times (1./A1(3) + 1./A1(2)) \times DEXP(S3)
3520
         63 CONTINUE
3521
          SUM=SUM-X*YA*(1./A1(2)+1./A1(1))*(1./(A1(1)+A1(2)))
3523
          SUM=SUM-X*Z*(1./A1(3)+1./A1(1))*(1./(A1(1)+A1(3)))
3525
          SUM = SUM - YA \times Z \times (1./A1(3) + 1./A1(2)) \times (1./(A1(2) + A1(3)))
3530
          G(2,3)=SUM
35 35
          G(2,3) = (1.+SG*UNIFM2(10.,0.,2.))*G(2,3)
3540
          SUM=0.
3550
          KN=SN+1
3500
          X=R1(KN)/A1(KN)
         Do 28 I=1.SN+1
3570
3580
          SUM=SUM-X*(CI(I)/(AI(I)+AI(KN))-CI(I)/AI(I))
3590
          S3=(A1(I)+GAMMA+A1(KN)+GAMMA)*T
3600
          IF(S3.LT.-90.) GO TO 29
3610
          SUM=SUM+X*C1(I)/(A1(I)+A1(KN))*DEXP(S3)
3620
      29 S3=A1(I)\starT
          IF(S3.LT.-90.) GO TO 28
3630
3647
          SUM=SUM-X*CI(I)/A1(I)*DEXP(S3)
3650
      28 CONTINUE
          G(1.4)=SUM
3660
```

```
G(1,4)=(1.+SG*UNIFM2(10.,0.,2.))*G(1,4)
3665
3670
         SUM=G(1,4)/A1(KN)
3680
         DO 30 I=1.KN
3690
         SUM=SUM-X*CI(I)/(A1(I)**2)
3700
          S3=AI(I)*T
3710
         IF(S3.LT.-90.) GO TO 30
3720
         SUM=SUM-X*C1(I)*(T/A1(I)-1./(A1(I)**2))*!)EXP(S3)
3730
      30 CONTINUE
3740
         G(1.5) = SUM
3745
         G(1.5)=(1.+SG*UNIFM2(10..0..2.))*G(1.5)
         SHM=0.
3750
         DO 32 I=1.KN
3760
3770
        X=S1(Kn)\setminus V1(Kn)
3780
      SUM=SUM+X*C1(I)/A1(I)*(I./A1(I)-I./(A1(I)+A1(KN))+I./A1(KN)+T)
3790
         S3=\Lambda I(I)*T
         IF($3.LT.-90.) GO TO 33
3800
         SUM=SUM-R1(KN)/A1(\langle N)*C1(I)/(A1(I)**2)*DEXP(S3)
3810
3820
      33 S3=(A+(I)+GAMMA+A+(KN)+GAMMA)*T
         IF(S3.LT.-90.) GO TO 51
3830
3840 SUM=SUM+R1(KN)/A1(KN)*C1(I)/(A1(I)*(A1(I)+A1(KN)))*DEXP(S3)
      51 S3=A1(KN)*T
3850
         IF(S3.LT.-90.) GO TO 45
3860
         SUM=SUM-R1(KN)/A1(KN)*C1(I)/(A1(I)*A1(KN))*DEXP(S3)
3870
      45 CONTINUE
3880
      32 CONTINUE
3890
3900
         G(2.4)=SUM
3905
         G(2,4)=(1.+SG*UNIFM2(10.,0.,2.))*G(2.4)
3910
         SUM=G(2,4)/A1(KN)
3920
         DO 34 I=1.KN
3930
         SUM=SUM+T*T/2.*?1(KN)*C1(I)/(A1(I)*A1(KN))
3940
         SUM=SUM=RT(KN)*CT(I)/(AT(I)*AT(KY))/(AT(I)**2)
3950
         S3=AI(I)*T
3960
         IF(S3.LT.-90.) GO TO 34
3970
        SUM = SUM - 21(KN)/A1(KN) *C1(I)/A1(I) *(T/A1(I) - 1./(A1(I) **2))
        *DEXP(S3)
3980
      34 CONTINUE
         G(2,5)=SUM
3990
         G(2,5)=(1.+SG*UNIFM2(10.,0.,2.))*G(2,5)
3995
4000
         SUM=O.
4010
         X=RI(KN)/AI(KN)
4020
         DO 35 I=1.SN+1
         4030
        SUM=SUM+X*C1(I)/A1(I)*(T/A1(I)-1./(A1(I)*(A1(I)+A1(XN)))+
4040
         (T**2)/2.)
4050
         SUM=SUM+X*C1(I)/(A1(I)**3)
         S3=(A1(I)+GAMMA+A1(KN)+GAMMA)*T
4060
         IF(S3.LT.-90.) SO TO 52
4070
         SUM=SUM+X*C1(I)/A1(I)*DEXP(S3)/(A1(I)*(A1(I)+A1(KN)))
4080
      52 S3=A1(KN)*T
4090
         IF(S3.LT.-90.) On TO 53
4100
          TER=1./(A1(KN)**2)-T/A1(KN)-1./(A1(I)*A1(KN))
4110
```

```
4120
         SUM=SUM+X*C1(I)/A1(I)*TER*DEXP(S3)
4130 53 S3≈A1(I)*T
4140
         IF(S3.LT.-90.) GO TO 35
4150
         SUM=SUM-X*C1(I)/(A1(I)**3)*DEXP(S3)
4160
      35 CONTINUE
4170
         G(3.4) = SIJM
4175
         G(3.4)=(1.+SG*UNIFM2(10.,0.,2.))*G(3.4)
4180
         SUM=G(3,4)/AI(KN)
4190
         DO 36 1=1,KN
         X=RI(KN)/AI(KN)*CI(I)/AI(I)
4200
4210
         YA = X
4220
         SUM=SUM-X/(A1(I)**3)+YA*(T*T/(2.*A1(I))+(T**3)/3.)
4230
         S3=A1(I)*T
4240
         IF($3.LT.-90.) GO TO 36
4250
         SUM=SUM-X*(T/(A1(1)**2)~1./(A1(1)**3))*DEXP(S3)
4260 36 CONTINUE
4270
         G(3,5)=SUM
4275
         G(3,5) = (1.+SG*UNIFM2(10..0..2.))*G(3.5)
4280
         SUM=O.
4290
         X=R1(KN)/A1(KN)
4300
         SIM=X*X*(T+2./A+(KN)-1./(2.*A+(KN)))
4310
         S3=A1(KN)*T
         IF(53.LT.-90.) GO TO 37
4320
4330
         SUM=SUM-X*X*2./A1(KN)*DEXP(S3)
4340
      37 S3=2.*(A1(KN)+GAMMA)*T
4350
         IF(S3.LT.-90.) GO TO 44
4360
         SUM=SUM+X*X/(2.*A1(KN))*DEXP(S3)
4370
      44 CONTINUE
4380
         G(4,4)=SIM
4335
         G(4,4)=(1.+SG*UNIFM2(10.,0.,2.))*G(4,4)
4390
          SUM=G(4,4)/AI(KN)
44 00
         SUM=SUM-X*X*(1./(A1(KN)**2)-T*T/2.)
         S3=A1(KN)*T
4410
4420
         IF($3.LT.-90.) GO TO 38
         SUM=SUM-X*X*(T/A1(KN)-1./(A1(KN)**2))*DEXP(S3)
4430
4440
      38 CONTINUE
445()
         G(4,5)≈SIM
4455
         G(4.5) \approx (1.+SG*UNIFM2(10.,0.,2.))*G(4.5)
         SUM = G(4.4)/(AI(KN)**2)
4450
4470
         SUM=SUM+X*X*(T**3)/3.
4480
        SUM=SUM+2.*X*X*((T**2)/(2.*A1(KN))-1./(A1(KN)**3))
449.)
         S3=A1(KN)*T
4500
         IF(S3.LT.-90.) 60 TO 39
4510
         SUM=SUM-2.*X*X*(T/(A1(KN)**2)-1./(A1(KN)**3))*DEXP(S3)
4520
      39 CONTINUE
4530
         G(5,5)=SUM
4535
         G(5,5)=(1.+SG*UNIF42(10.,0.,2.))*G(5,5)
      PRINT, "UNSCALED ENTRIES IN GRAM DETERMINANT ARE"
4540
                                                        INNER PRODUCT"
4550
          PRINT,"
                                 ROW
                                             COLUMN
          ",TRIRG
                                                           G(I,J)"
4560
                                  I
                                                 J
          PRINT, ""
45/0
```

```
4580
          STEP1=STEP1+SN
4590
          DO 942 JIK=1,STEP1
          DO 943 KLI=1,STEP1
46 00
4601
         XMSGI=DABS(G(JIK,KLI))*(1.+1./(2.**NBITS))
4602
4605
         CALL ATOD(G(JIK, KLI), XMSGI, NBITS)
          G(KLI, JIK)=G(JIK, KLI)
4610
4620
          PRINT, JIK, KLI, G(JIK, KLI)
4630 943 CONTINUE
4640 942 CONTINUE
4650
         MORIG=M
         N=SN2
4660
         SCALE SCALAR PRODUCTS BY 1.E6 FOR COMPUTATION FACILITY
4670C
4680
         DO 1011 I=1.5N2+1
4690
         DO 1021 J=1,SN2+1
         G(I,J)=1.E9*G(I,J)
4700
4710 1021 CONTINUE
4720 IOII CONTINUE
4730C
         EVALUATE DIAGONAL COFACTORS COEFA(I)
4740
          PRINT."DIAGONAL COFACTORS ARE AS FOLLOWS"
4750
         DO 300 J=1.5N2
4760
         100 310 I=1.5N2
4770
         A(J,I)=G(J+1,I+1)
4730
         A(I,J) = A(J,I)
4790 310 CONTINUE
4800 300 CONTINUE
4810
         ID=1
4820
         COEF(1) = DETE(A, N, 20)
4830
         PRINT, ID, COEF (ID)
         DO 500 LKJ=1.SN
4840
4850
         DO 400 J=1.LKJ
4850
         DO 410 I = 1.1 KJ
         A(J,I)=G(J,I)
4870
4880
          A(I,J) = G(I,J)
4890 410 CONTINUE
4900 400 CONTINUE
4910
          DO 510 J=1.LKJ
          DO 520 I=LKJ+1.5N2
4920
4930
          A(J,I)=G(J,I+1)
4940
          A(I,J)=A(J,I)
4950 520 CONTINUE
4960 510 CONTINUE
4970
         DO 600 J=LKJ+1.SN2
4980
         DO 610 I=LKJ+1.5N2
4999
          A(J,I) \approx G(J+1,I+1)
5000
          A(I,J)=A(J,I)
5010 610 CONTINUE
5020 600 CONTINUE
5030
          COEF(LKJ+1)=DETE(A,N,20)
          PRINT, LKJ+1, COEF(LKJ+1)
5040
5050
         LNM=LKJ+1
```

```
5030 500 CONTINUE
5070
         PRINT, "EIGENVALUE EQUATION COEFFICIENTS ARE"
         EVALUATE EIGENVALUE EQUATION COEFFICIENTS B(I)
50300
5090
         DO 640 I=1.5N+1
51.00
         B(I)=DSQRT(DABS(COEF(SN+2-I)))
5110
         PRINT. 1,3(1)
5120 640 CONTINUE
         EVALUATE SYSTEM POLES
51300
5140
         N=SN
         PRINT, "POLES OF SYSTEM ARE GIVEN BELOW"
5150
5160
         PRINT."
                             NUMBER
                                       REAL (MHZ)
                                                     IMAG(MHZ)"
5170
          CALL DOWNER (B.N. RR. CR)
5130
          DO 650 J=1.SN
5190
          XI.AMR(J) = RR(J)/PI2
5200
          XI.AMC(J) = CR(J)/PI2
5210
          AP(J) = RR(J) * 1.E6
5220
          A1(J) = -1.106 * W(J)
5230
          PRINT, J, XLAMR(J), XLAMC(J)
5240
          XLAMR(J) = RR(J)
5250 650 CONTINUE
5260
          RR(SN+1) = -N(SN+1)
5270
          A1(SN+1)=-1.1)6*W(SN+1)
5280
          AP(SN+1)=RR(SN+1)*1.E6
          FVALUATE SYSTEM RESIDUES
52900
5300
          FLAG=1
5310
          DO 660 K=1.SN+1
5320
          IF(XLAMC(J)) 670,660,670
5330 670 FLAG=0
5340 660 CONTINUE
5350
          IF(FLAG) 680,680,690
5360 690 DO 700 I=1.SN
5370
          DO 710 J=1,SN
5380
          TEMP1=1
5390
          DO 711 L=1.1
5400
          TEMP1=TEMP1*XLAMR(J)
5410 711 CONTINUE
5420
          EWEI=O.
5437
          EWE2=0.
          EWE=1./(TEMP1*(XLAMR(J)+M(SN+1)))
5440
          EWELA=XLAMR(J)*T
5450
5450
          EWE2A = -W(SN+1) \star T
          IF(FWE2A.GT.-80.) EWE2=DEXP(EWE2A)
5470
5480
          IF (EMELA.GT.+80.) EWEL=DEXP(EMELA)
          C(I,J) = EWE+ (EWE+-EWE2)
5490
5500
          C(I,J)=1.E-3*SK*C(I,J)
5510
          TEMP=0.
          DO 720 K=1.I
5520
5530
          TEMP2=1.
          DO 721 KK=1,I+1-K
5540
          TEMP2=TEMP2*XLAMR(J)
5550
5560 721 CONTINUE
          TEMP=TEMP+U(K+1,LIMIT1(K+1))/TEMP2
5570
```

```
5580 720 CONTINUE
5590
         C(I,J)=C(I,J)-TEMP
         CS(I,J)=C(I,J)
5600
5610 710 CONTINUE
5620 700 CONTINUE
5630
         CALL MTINV(C,N,N,25,LABEL)
5640
         ICOUNT=1
5650
         EPS=1.D-3
5660 987 CALL MTMPY(O.CS.C.E.N.N.N)
56 10
         DO 763 I=1,SN
5630
         DO 763 J=1.SN
5690
         E(I,J)=EID(I,J)-E(I,J)
5700 763 CONTINUE
5710
         TEMPO=0.00
5/20
         DO 764 I=1,SN
5733
         XNOR=0.DO
5740
         DO 765 J=1.SN
         XNOR=XNOR+DABS(E(I,J))
5750
5760 765 CONTINUE
5770
         IF(XNOR.GT.TEMPO) TEMPO=XNOR
5780 764 CONTINUE
5790
         IF(TEMPO.GT.1.0) GO TO 997
5800
         IF (TEMPO.LT.EPS) GO TO 998
5810
         DO 766 I=1,SN
         DO 767 J=1,SN
5820
5830 767 E(I,J)=EID(I,J)+E(I,J)
5840 766 CONTINUE
         CALL MTMPY(O,C.E.G.N.N.N)
5850
         DO 768 I=1,SN
5860
5870
         DO 768 J=1.SN
5880
         C(I,J)=G(I,J)
5890 768 CONTINUE
5900
         IF(ICOUNT.GT.5) GO TO 908
5913
         ICOUNT=ICOUNT+1
5920
         GO TO 987
5930 997 PRINT, "NORM TOO LARGE", TEMPO
5940 998 CONTINUE
5950
         DO 740 I=2.SN+1
5960
         S(I-1,1)=Y(I,LIMITI(I))
5970 740 CONTINUE
5980
         CALL MIMPY(O,C,S,R,SN,SN,I)
5990
         PRINT, "RESIDUES OF SYSTEM POLES ARE GIVEN BELOW"
6000
         DO 751 I=1.SN
0005
6010
         PRINT, I, R(I, 1) * 1.E3
6020 751 CONTINUE
6030
         GO TO 1000
6040 680 CONTINUE
6050 1000 CONTINUE
         PRINT,"
                           PERCENTAGE ERROR"
6060
6070
         PRINT,""
```

```
6080
         PRINT."
                      NUMBER
                                   POLE
                                               RESIDUE"
6090
         PRINT.""
6100
          DO 346 II=1.SN
6110
         XAX(I1)=100.*(R(I1,1)*1.E6-R1(I1))/R1(I1)
6120
          XX(II)=100*(AP(II)-AI(II))/AI(II)
6130 346 PRINT, I!, XAX(II), XX(II)
6140 PRINT, ""
6150
         PRINT, ""
6170
          SUM=O.
6180
         SUM1 = 0.
6190
          J=SN+1
62 00
          DO 341 JI=1.SN
6201
          CI(JI) = -CI(JI)
6210
          CP(JI)=R(JI,I)*RI(J)/(-W(J)-RR(JI))
6220
          CP(J)=CP(J)+R(JI,I)*RI(J)/(W(J)+RR(JI))
6230 341 CONTINUE
6231
          CI(J) = -CI(J)
6240
          IJK=0
6249
          MORIG=1
6250
          DO 247 JK=1, MORIG+1
6260
         XJK≈JK
6270
          YOUT=0.0
6280
         DO 343 IJ=1.SN+1
6290
         XT(IJ)=0.0
6300
          XTA(IJ)=RR(IJ)*(XJK-1)*DELT
          IF(XTA(IJ).GT.-80.) XT(IJ)=CP(IJ)*DEXP(XTA(IJ))
6310
6320
          YOUT=YOUT-SK*XT(IJ)
6330 343 CONTINUE
6340
          DELOUT=YOUT-Y(1, JK)
6350
          IJK=IJK+1
6360
          IF(IJK.GE.100) GO TO 248
6370
          GO TO 249
6380 248 IJK=0
6400 249 CONTINUE
6410 247 CONTINUE
6420
          T=T*1.E-6
         (X) 242 IX=1,SN+1
DO 242 JX=1,SN+1
6430
6440
6450
          SUM=SUM-CP(IX)*CP(JX)/(AP(IX)+AP(JX))
6460
          IF((AP(IX)+AP(JX))*T*LT*-90*) GO TO 243
6470
          SUM=SUM+CP(IX)*CP(JX)/(AP(IX)+AP(JX))*(DEXP((AP(IX)+AP(JX))*T))
6480 243 SUM=SUM+2.*CP(IX)*CI(JX)/(AP(IX)+AI(JX))
6490
          IF((AP(IX)+A1(JX))*T.LT.-90.) GO TO 244
6500 SUM=SUM-2.*CP(IX)*C1(JX)/(AP(IX)+A1(JX))*(DEXP((AP(IX)+A1(JX))*T))
6510 244 SUM=SUM-CI(IX)*CI(JX)/(AI(IX)+AI(JX))
6520
          SUMI=SUMI-CI(IX)+CI(JX)/(AI(IX)+AI(JX))
6530
          IF((A1(IX)+A1(JX))*T.LT.-90.) GO TO 242
6540
          SUM = SUM + C1(IX) + C1(JX) / (A1(JX) + A1(IX)) + (DEXP((A1(IX) + A1(JX)) + T))
6559 SUM1=SUM1+CI(IX)\starCI(JX)/(AI(IX)+AI(JX))\star(DEXP((AI(IX)+AI(JX))\starT))
6560 242 CONTINUE
6570
         TSUM=SUM/T
6590
         SUMNOR=S'IMI/T
```

```
PRINT, "NORM=", SUMNOR
PRINT, ""
TNORM=TSUM/SUMNOR
FRINT, ""
FRINT, ""
FRINT, ""
FRINT, "MEAN SQUARED ERROR=", TSUM
FRINT, ""
FRINT, "MORMALIZED MSE=", TNORM
```

MISSION of Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C³I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

LO LO LO LO DE OSCOSO DE O

